Fant 9890 publikasjoner. Viser side 72 av 396:
The ClairCity Horizon2020 project aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours as well as their preferred future behaviours and policy measures in six European cities1 through an extensive citizen and stakeholder engagement process. The project also models the possible future impacts of citizens’ policy preferences and examines implementation possibilities for these measures in the light of the existing institutional contexts in each city (Figure 0-1). This report summarises the main policy results for Amsterdam (the Netherlands).
ClairCity Project
2020
ClairCity aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours, their preferred future behaviours and their preferred future policy measures in six European cities. The project also examines the possible future impacts of citizens’ policy preferences and implementation possibilities for these measures in the light of the existing institutional contexts in each city. With this aim, ClairCity has carried out in all six cities an extensive citizen, stakeholder and policy maker engagement process (Chapter 1). This report summarises the main policy results for the first of the six cities, Bristol (UK). The other ClairCity cities are Amsterdam (NL), Ljubljana (SL), Sosnowiec (PL), CIRA/ Aveiro (PT) and Liguria / Genoa (IT).
ClairCity Project
2019
The ClairCity Horizon2020 project aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours as well as their preferred future behaviours and policy measures in six European cities1 through an extensive citizen and stakeholder engagement process. The project also models the possible future impacts of citizens’ policy preferences and examines implementation possibilities for these measures in the light of the existing institutional contexts in each city (Figure 0-1). This report summarises the main policy results for Ljubljana.
ClairCity Project
2020
Clean air and healthy lungs. Enhancing the World Bank's Approach to Air Quality Management. Environment and natural resources global practice discussion paper; 03
This report specifically deals with air pollution, which was reported, by the World Health Organization (WHO), as the single largest environmental health risk globally in 2012 (WHO, 2014a). Air pollution from outdoor and household sources jointly account for more than 7 million deaths (3.7 million from ambient air pollution and 4.3 million from household air pollution). The following sections of this chapter present the objectives of, and key aspects of the institutional context for, this report followed by an examination of some of the major drivers of deteriorating ambient air quality in developing countries; air pollution sources and impacts; and the status of air quality management in developing countries. Chapter two presents the results of a desk-based portfolio review of World Bank projects that are relevant to reduction of air pollution. This is followed, in chapter three, by an examination of case studies of World Bank projects whose objectives include addressing ambient air pollution, highlighting good practices and lessons for future work of the Bank in supporting clients. Chapter four presents possible approaches for enhancing future Bank support in helping clients to improve air quality and reduce the associated adverse health outcomes. Chapter five presents overall conclusions and recommendations.
2015
Clean air policies are key for successfully mitigating Arctic warming
A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reductions. Fossil fuel use is projected to rapidly decline in an increasingly sustainable world, resulting in far-reaching air quality benefits. Despite human health benefits, reductions in sulfur emissions in a more sustainable world could enhance Arctic warming by 0.8 °C in 2050 relative to the 1995–2014, thereby offsetting climate benefits of greenhouse gas reductions. Targeted and technically feasible emissions reduction opportunities exist for achieving simultaneous climate and human health co-benefits. It would be particularly beneficial to unlock a newly identified mitigation potential for carbon particulate matter, yielding Arctic climate benefits equivalent to those from carbon dioxide reductions by 2050.
Springer Nature
2022
This paper reports estimated maintenance-cleaning costs, cost savings and cleaning interval increases for structural surfaces and windows in Europe obtainable by reducing the air pollution. Methodology and data from the ICP-materials project were used. The average present (2018) cleaning costs for sheltered white painted steel surfaces and modern glass due to air pollution over background, was estimated to be ~2.5 Euro/m2∙year. Hypothetical 50% reduction in the air pollution was found to give savings in these cleaning costs of ~1.5 Euro/m2∙year. Observed reduction in the air pollution, from 2002–2005 until 2011–2014, have probably increased the cleaning interval for white painted steel with ~100% (from 12 to 24 years), representing reductions in the single intervention cleaning costs from 7 to 4%/year (= % of one cleaning investment, per year during the cleaning interval) and for the modern glass with ~65% (from 0.85 to 1.3 years), representing reductions in the cleaning cost from 124 to 95%/year. The cleaning cost reductions, obtainable by 50% reduction in air pollution, would have been ~3 %/year for white painted steel and ~60%/year for the modern glass, representing ~100 and 50% additional cleaning interval increases. These potential cleaning cost savings are significantly higher than previously reported for the weathering of Portland limestone ornament and zinc monuments.
MDPI
2019
Climate and other applications of 20 years of Along Track Scanning Radiometer LST measurements. NILU F
2012
2011
2022
2013
2008
2015
Nitrous oxide (N2O) is the most important stratospheric ozone-depleting agent based on current emissions and the third largest contributor to increased net radiative forcing. Increases in atmospheric N2O have been attributed primarily to enhanced soil N2O emissions. Critically, contributions from soils in the Northern High Latitudes (NHL, >50°N) remain poorly quantified despite their exposure to rapid rates of regional warming and changing hydrology due to climate change. In this study, we used an ensemble of six process-based terrestrial biosphere models (TBMs) from the Global Nitrogen/Nitrous Oxide Model Intercomparison Project (NMIP) to quantify soil N2O emissions across the NHL during 1861–2016. Factorial simulations were conducted to disentangle the contributions of key driving factors, including climate change, nitrogen inputs, land use change, and rising atmospheric CO2 concentration, to the trends in emissions. The NMIP models suggests NHL soil N2O emissions doubled from 1861 to 2016, increasing on average by 2.0 ± 1.0 Gg N/yr (p
Elsevier
2025
2019
2022
Climate Feedback From Wetland Emissions of Methane May Necessitate Greater Anthropogenic Reductions
John Wiley & Sons
2021
Climate health risks to children and adolescents: exposures, policy and practice interventions
ETC/HE
2024
Climate impact of tropospheric ozone changes. Air pollution research report, no. 81
2003