Fant 9747 publikasjoner. Viser side 10 av 390:
The report provides the annual update of the European air quality concentration maps and population and vegetation exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, peak season average of maximum daily 8-hour means, SOMO35, SOMO10), NO2 (annual average) and benzo(a)pyrene (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2022. The report contains also maps of Phytotoxic ozone dose (PODY) for selected crops (wheat, potato and tomato) and trees (spruce and beech) and NOx annual average map for the same year 2022. The ozone map of peak season average of maximum daily 8-hour means is presented for the first time. The trends in exposure estimates in the period 2005–2022 are summarized. The analysis for 2022 is based on the interpolation of the annual statistics of the 2022 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database, complemented, when needed, with measurements from additional sources. The mapping method is the Regression – Interpolation – Merging Mapping (RIMM). It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps. It also presents concentration change in 2022 in comparison to the five-year average 2017-2021 using the difference maps and exposure estimates.
ETC/HE
2024
Monitoring air quality in ports and nearby cities is crucial to understanding the role of emissions from shipping and other port activities. This report analyzes air quality in 23 European ports, revealing limited observations in and around port areas. Only 5 of the 23 ports had at least one air quality sampling point for NO2 and PM10 inside the port area. Concentrations in nearby cities can be up to double (NO2) and 74% higher (PM10) when the wind comes from the port. EEA air quality maps showed higher annual mean NO2 concentrations in port areas compared to surrounding regions, with some ports exceeding the 2030 limit value of 20 µg/m³. Annual mean PM10 concentrations were also higher in port areas, with nine ports exceeding the new limit value. The limited number of sampling points makes it challenging to assess trends in NO2 and PM10 concentrations. International shipping emissions significantly contribute to NO2 levels in port cities, as shown by pollution episodes in Antwerpen and Barcelona.
ETC/HE
2024
In the framework of the Forum for Air Quality Modelling in Europe (FAIRMODE), a modelling intercomparison exercise for computing NO2 long-term average concentrations in urban districts with a very high spatial resolution was carried out. This exercise was undertaken for a district of Antwerp (Belgium). Air quality data includes data recorded in air quality monitoring stations and 73 passive samplers deployed during one-month period in 2016. The modelling domain was 800 × 800 m2. Nine modelling teams participated in this exercise providing results from fifteen different modelling applications based on different kinds of model approaches (CFD – Computational Fluid Dynamics-, Lagrangian, Gaussian, and Artificial Intelligence). Some approaches consisted of models running the complete one-month period on an hourly basis, but most others used a scenario approach, which relies on simulations of scenarios representative of wind conditions combined with post-processing to retrieve a one-month average of NO2 concentrations.
The objective of this study is to evaluate what type of modelling system is better suited to get a good estimate of long-term averages in complex urban districts. This is very important for air quality assessment under the European ambient air quality directives. The time evolution of NO2 hourly concentrations during a day of relative high pollution was rather well estimated by all models. Relative to high resolution spatial distribution of one-month NO2 averaged concentrations, Gaussian models were not able to give detailed information, unless they include building data and street-canyon parameterizations. The models that account for complex urban geometries (i.e. CFD, Lagrangian, and AI models) appear to provide better estimates of the spatial distribution of one-month NO2 averages concentrations in the urban canopy. Approaches based on steady CFD-RANS (Reynolds Averaged Navier Stokes) model simulations of meteorological scenarios seem to provide good results with similar quality to those obtained with an unsteady one-month period CFD-RANS simulations.
Elsevier
2024
2024
2024
2024
2024
Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2023. Annual report
This annual report for 2023 summarizes the activities and results of the greenhouse gas monitoring at the Zeppelin Observatory, situated on Svalbard, during the period 2001-2023, and the greenhouse gas monitoring and aerosol observations from Birkenes for 2009-2023.
NILU
2024
Background
Hazard and risk assessment of nanomaterials (NMs) face challenges due to, among others, the numerous existing nanoforms, discordant data and conflicting results found in the literature, and specific challenges in the application of strategies such as grouping and read-across, emphasizing the need for New Approach Methodologies (NAMs) to support Next Generation Risk Assessment (NGRA). Here these challenges are addressed in a study that couples physico-chemical characterization with in vitro investigations and in silico similarity analyses for nine nanoforms, having different chemical composition, sizes, aggregation states and shapes. For cytotoxicity assessment, three methods (Alamar Blue, Colony Forming Efficiency, and Electric Cell-Substrate Impedance Sensing) are applied in a cross-validation approach to support NAMs implementation into NGRA.
Results
The results highlight the role of physico-chemical properties in eliciting biological responses. Uptake studies reveal distinct cellular morphological changes. The cytotoxicity assessment shows varying responses among NMs, consistent among the three methods used, while only one nanoform gave a positive response in the genotoxicity assessment performed by comet assay.
Conclusions
The study highlights the potential of in silico models to effectively identify biologically active nanoforms based on their physico-chemical properties, reinforcing previous knowledge on the relevance of certain properties, such as aspect ratio. The potential of implementing in vitro methods into NGRA is underlined, cross-validating three cytotoxicity assessment methods, and showcasing their strength in terms of sensitivity and suitability for the testing of NMs.
BioMed Central (BMC)
2024
Chemicals of emerging concern (CECs) in coastal waters: Environmental impact & Management strategies
2024
2024
New advanced models (NAMs) for risk assessment of bisphenol A alternatives
The safety of bisphenol A (BPA) due to its adverse effects on the immune system has led to an increasing concern and a significant regulatory shift. The European Food Safety Authority (EFSA) proposed a reduction in the tolerable daily intake (TDI) of BPA in food in their 2023 scientific opinion, highlighting the need for stricter regulations compared to their previous assessment in 2015. This regulatory action has spurred the production of BPA alternatives, raising concerns about their safety due to insufficient toxicological data. Addressing this gap is crucial for ensuring human and environmental health. In this project, multiple genotoxicity endpoints were applied for testing of two regulatory relevant BPA alternatives, bisphenol E (BPE) and bisphenol P (BPP), in different human models: 2D HepG2 liver cells, 3D liver spheroids and primary human peripheral blood lymphocytes. DNA strand breaks and oxidised base lesions were evaluated by the enzyme-modified version of the comet assay, while clastogenicity and aneugenicity were analysed by the in vitro micronucleus assay (OECD TG 487, 2016), together with cytotoxicity. Development of new advanced models (NAMs), as 3D spheroids, are essential for next-generation risk assessment (NGRA) in line with the 3R's to replace, reduce or refine animal experiments. In this aspect, validation and standardisation of NAMs are needed to reach regulatory readiness level and development of OECD Test Guidelines. Therefore, a standardisation and pre-validation of the advanced 3D liver spheroid model was performed by using multiple genotoxicity endpoints and by comparing the obtained results with standard genotoxicity models.
2024
Monitoring of microplastics in the Norwegian environment (MIKRONOR) 2023
The MIKRONOR monitoring program aims to establish baseline levels of microplastics in the Norwegian environment and to identify potential sources and sinks. This third MIKRONOR report focuses mainly on results from air samples, including data on tyre wear particles (TWP), as well as river and fjord surface water samples, and their correlation to rainfall and river discharge levels. Additionally, it presents data from sand samples taken from an OSPAR beach in the outer Oslofjord. The results for 2023 provide evidence of the omnipresence of microplastics in the environment. However, levels were higher near cities and populated areas, with decreasing levels further from human activities. This trend was observed in both air and surface water samples. Sand samples from the OSPAR beach in the Oslofjord showed levels of microplastics comparable to, or slightly higher than studied eabches at Svalbard. Since no other beach studies have been conducted in the MIKRONOR program, it is difficult to determine typical microplastic levels on a beach in the outer Oslofjord. Determined levels of microplastics in the beach samples were comparable to levels in marine bottom sediment at remote areas along the coast and lower than levels in sediments from the Oslofjord. Main conclusions of this report highlight the need for further research into the processes that control the levels and variations of microplastics and TWPs, such as weather conditions, river discharge, and air mass movement. Sampling of different matrices should, where possible, be conducted using similar strategies and equipment to improve the comparability of results. Additionally, the high spatial and temporal variability between samples must be considered to determine the appropriate number of analyses needed to obtain reliable results.
Norsk institutt for vannforskning og Miljødirektoratet
2024
Stiftelsen NILU har, i samarbeid med Transportanalyse AS, utarbeidet trafikk- og luftkvalitetsberegninger for Oslo og Bærum kommuner. Arbeidet omfatter en kartlegging av luftkvaliteten ved trafikkberegninger og utslipps- og spredningsberegninger for relevante forurensningskomponenter (PM10, PM2,5 og NO2) for Dagens situasjon 2022 og Referansesituasjonen 2030 og for 2030 med tiltak. Det er beregnet risiko for overskridelse av dagens grenseverdier i forurensningsforskriften og for grenseverdier i revidert EU-direktiv som vil innføres i 2030.
NILU
2024
NILU har i 2024 bistått Klima- og miljødepartementet (KLD) med en utrednings- og medvirkningsprosess for å se på muligheten for etablering av et samfunnsoppdrag for sirkulær økonomi. Dette er et oppdrag under KLDs rammeavtale for klima- og miljøkunnskap. I regjeringens «Handlingsplan for en sirkulær økonomi» er et av handlingspunktene å utrede et samfunnsoppdrag for sirkulær økonomi. Målet med dette oppdraget var å fasilitere en prosess for å identifisere mulige overordnede mål og delmål og etablere rammen for et mulig nasjonalt samfunnsoppdrag. Aktivitetene i denne fasen inkluderte en serie med koordinerte samskapingsmøter for å mobilisere og engasjere relevante samfunnsaktører og komme fram til en felles forståelse av et mulig målrettet samfunnsoppdrag. Prosessen og resultatene er oppsummert i denne rapporten.
NILU
2024
2024
2024
2024
2024
Måling av gasser i Statsarkivets lokaler i Trondheim. Fase 2 - 2024
Denne rapporten viser resultater fra fase 2 i måleprosjektet NILU har utført ved Statsarkivet i Trondheim. Det er gjort prøvetaking og analyse i en periode på sju dager fra 23. til 30. mai ved to lokaliteter, én innendørs og én utendørs. Totalkonsentrasjonen av VOC’er (TVOC) ble målt til 135 µg/m3 gitt som toluen-ekvivalenter ved lokaliteten inne (MAG A, Reol 097) og 33 µg/m3 ved lokaliteten ute. Resultatene synliggjør effekten av innendørs ventilasjonssystemer og begge studiene vil brukes av Statsarkivet i sitt videre arbeid med innendørs luftkvalitet.
NILU
2024
Spredningsberegninger av luftforurensning fra Sunndal Metallverk
Rapporten presenterer spredningsberegninger for utslipp til luft fra Hydro Sunndal sitt smelteverk i Sunndalsøra for nåsituasjonen med utslippsmengder som i gjeldende utslippstillatelse, og en situasjon med ny utvidet anodefabrikk. Det er beregnet bakkekonsentrasjoner av SO2, støv, fluorider, PAH og metallkomponenter. Det er også gjort beregninger for utslipp i perioden 23. mai til 15. august 2019 hvor NILU utførte målinger av disse komponentene. Basert på beregningene er det vurdert «lav til moderat» risiko for overskridelse av forskriftens målsettingsverdi for nikkel i området nær anlegget. Ny anodefabrikk har ingen vesentlig betydning for konsentrasjonsnivåer utenfor metallverket som er relevant i forhold til gjeldende grenseverdier eller luftkvalitetskriterier.
NILU
2024
We investigate the concentration fluctuations of passive scalar plumes emitted from small, localised (point-like) steady sources in a neutrally stratified turbulent boundary layer over a rough wall. The study utilises high-resolution large-eddy simulations for sources of varying sizes and heights. The numerical results, which show good agreement with wind-tunnel studies, are used to estimate statistical indicators of the concentration field, including spectra and moments up to the fourth order. These allow us to elucidate the mechanisms responsible for the production, transport and dissipation of concentration fluctuations, with a focus on the very near field, where the skewness is found to have negative values – an aspect not previously highlighted. The gamma probability density function is confirmed to be a robust model for the one-point concentration at sufficiently large distances from the source. However, for ground-level releases in a well-defined area around the plume centreline, the Gaussian distribution is found to be a better statistical model. As recently demonstrated by laboratory results, for elevated releases, the peak and shape of the pre-multiplied scalar spectra are confirmed to be independent of the crosswind location for a given downwind distance. Using a stochastic model and theoretical arguments, we demonstrate that this is due to the concentration spectra being directly shaped by the transverse and vertical velocity components governing the meandering of the plume. Finally, we investigate the intermittency factor, i.e. the probability of non-zero concentration, and analyse its variability depending on the thresholds adopted for its definition.
Cambridge University Press
2024