Fant 9759 publikasjoner. Viser side 165 av 391:
NILU and Hydro Aluminium performed a test campaign for measurements of CF4 and C2F6 for stack emissions at Husnes Aluminium Smelter. Time-integrated samples were taken with evacuated canisters combined with low-flow restrictors for continuous sampling periods as long as 6 weeks. The samples were analyzed at NILU with a Medusa preconcentration method combined with GC-MS SIM. As a main conclusion, time integrated sampling together with Medusa GC-MS methodology is a very precise alternative to the traditional attempts to quantify PFC-emission.
NILU
2022
Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling.
2010
Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling. NILU PP
2010
Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling.
2010
2003
Hydrolysis of FTOH precursors, a simple method to account for some of the unknown PFAS
There is a growing concern over a suspected presense of unknown perfluoroaliphatic substances (PFAS) in consumer goods and in the environment. Such unknown substances, possibly with high molecular weight, might be precursors of hazardous or controlled known PFAS. Recent studies confirmed that total organic fluorine (TOF) content often can not be explained by the measured target PFAS. One of the suspected classes of such unknowns are polymers with fluorotelomer alcohol (FTOH) residues in a side chain. In this report we suggest hydrolysis of precursors, as a complementary method to account for the unknown PFAS. It was shown here that hydrolysis allows to preserve structural information on the perlfuorinated parts of the precursors, which can be an advantage for the purpose of accurate risk assessment or source identification. A convenient procedure for hydrolysis with 4% sodium hydroxide inwater-methanol mixture (1:9) at 60 C for 16 h was shown to convert model substances - FTOH acrylate, methacrylate and isobutyrate esters as well as FTOH phenylcarbamate to free FTOHs. Analysis of extracts of textile samples with preliminary hydrolysis and without it showed up to 1300-fold higher level of “hidden” FTOHs.
Pergamon Press
2021
Hydrophilic organic pollutants - A threat to the Arctic? AMAP Report, 2002:2
2002
2014
2013
2022
Høysesong for svevestøv: Bør vi sove med lukket vindu?
Norges forskningsråd
2024
I vinterferien blir luftkvaliteten nær skolene bedre
Norges forskningsråd
2025
2017
ICOS Norway – a carbon cycle infrastructure
The Integrated Carbon Observation System (ICOS) research infrastructure is aimed at quantifying and understanding the greenhouse gas balance of Europe and neighboring regions. ICOS-Norway brings together the leading
Norwegian institutes for greenhouse gas observations in the three Earth system domains atmosphere, ocean, and
terrestrial ecosystems, providing world-leading competence, which is integrated into one jointly funded and operated infrastructure. This provides Norway with a state-of-the-art research infrastructure embedded in European
and global efforts. Even though each Earth system domain was part of dedicated research infrastructures prior to
the establishment of ICOS-Norway, the greenhouse gas community in Norway was divided and there was minimal
collaboration across the Earth system domains. The overall goal of ICOS-Norway is to provide accurate and accessible data on, as well as integrated assessments of, the Norwegian carbon balance at regional scale, across the land,
ocean, and atmosphere. ICOS-Norway has thus led to an increased impact of environmental observing systems
in Norway and surrounding seas, easily seen through the number of publications and new proposals generated
as collaborative efforts. This poster presents the ICOS-Norway infrastructure, including plans for expansion and
long-term funding.
European Geosciences Union (EGU)
2019
2017