Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9888 publikasjoner. Viser side 295 av 396:

Publikasjon  
År  
Kategori

Recent Trends in Maintenance Costs for Façades Due to Air Pollution in the Oslo Quadrature, Norway

Grøntoft, Terje

This study assesses changes since 1980 in the maintenance cost of the façades of the historical 17th to 19th century buildings of the Oslo Quadrature, Norway, due to atmospheric chemical wear, including the influence of air pollution. Bottom up estimations by exposure–response functions for an SO2 dominated situation reported in the literature for 1979 and 1995 were compared with calculations for the present (2002–2014) multi-pollutant situation. The present maintenance cost, relative to the total façade area, due to atmospheric wear and soiling was found to be about 1.6 Euro/m2 per year. The exposure to local air pollution, mainly particulate matter and NOx gases, contributed to 0.6 Euro/m2 (38%), of which the cost due to wear of renderings was about 0.4 Euro/m2 (22%), that due to the cleaning of glass was 0.2 Euro/m2 (11%), and that due to wear of other façade materials was 0.07 Euro/m2 (5%). The maintenance cost due to the atmospheric wear was found to be about 3.5%, and that due to the local air pollution about 1.1% of the total municipal building maintenance costs. The present (2002–2014) maintenance costs, relative to the areas of the specific materials, due to atmospheric wear are probably the highest for painted steel surfaces, about 8–10 Euro/m2, then about 2 Euro/m2 for façade cleaning and the maintenance of rendering, and down to 0.3 Euro/m2 for the maintenance of copper roofs. These costs should be adjusted with the importance of the wear relative to other reasons for the façade maintenance.

MDPI

2019

Recent Trends in Stratospheric Chlorine From Very Short-Lived Substances

Hossaini, Ryan; Atlas, Elliot; Dhomse, Sandip S.; Chipperfield, Martyn P.; Bernath, Peter F.; Fernando, Anton M.; Mühle, Jens; Leeson, Amber A.; Montzka, Stephen A.; Feng, Wuhu; Harrison, Jeremy J.; Krummel, Paul; Vollmer, Martin K.; Reimann, Stefan; O'Doherty, Simon; Young, Dickon; Maione, Michela; Arduini, Jgor; Lunder, Chris Rene

Very short‐lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2‐dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high‐altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid‐2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long‐lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year‐to‐year growth rates are variable and were small or negative in the period 2015–2017. Whether this is a transient effect, or longer‐term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004–2017) is −5.2% per decade with VSLS included, in good agreement to ACE satellite data (−4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid‐2000s.

American Geophysical Union (AGU)

2019

Recent Updates in Risk Assessment of Nanomaterials

Dusinska, Maria; Longhin, Eleonora Marta; El Yamani, Naouale; Rundén-Pran, Elise; Elje, Elisabeth; Honza, Tatiana; McFadden, Erin

2023

Receptor Modelling - Application to wood burning. NILU OR

Lazaridis, M.; Larssen, S.

2000

Recommendations for a composite surface-based aerosol network. European Network of Networks (ENAN) workshop, Emmetten, Switzerland, 28-29 April 2009. GAW - Global atmosphere watch, 207

Myhre, C.L.; Baltensperger, U. Contributing authors: Barrie, L.; Fiebig, M.; Goloub, P.; Gras, J.; Hoff, R.; Holzer-Popp, T.; Jennings, G.; Kinne, S.; Klausen, J.; Laj, P.; de Leeuw, G.; Li, s.-M.; Müller, D.; Ogren, J.; Pappalardo, G.; Schulz, M.; Smirnov, A.; Tørseth, K.; Volz-Thomas, A.; Wehrli, C.; Wilson, J.; Zhang, X.-Y.

2013

Recommendations for an update of the Implementing Provisions for Reporting (IPR) in connection with the revision of the Ambient Air Quality Directives

Tarrasón, Leonor; Guerreiro, Cristina

This report aims to support the on-going revision of the Ambient Air Quality Directives by providing a series of recommendations on the reciprocal exchange of information and reporting of ambient air quality (e-reporting) following the Commission Implementing Decision (2011/850/EU). It builds on the experience and understanding from the EEA and technical experts at its European Topic Centre for Human Health and the Environment (ETC HE) working with implementing provisions for reporting (IPR) and identifies areas for further efficiency gains in e-reporting, in particular concerning the H-K dataflows.

ETC/HE

2022

Recommendations for reporting "black carbon" measurements.

Petzold, A.; Ogren, J. A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; Wehrli, C.; Wiedensohler, A.; Zhang, X.-Y.

2013

Recommendations for reporting equivalent black carbon (eBC) mass concentrations based on long-term pan-European in-situ observations

Savadkoohi, Marjan; Pandolfi, Marco; Favez, Olivier; Putaud, Jean-Philippe; Eleftheriadis, Konstantinos; Fiebig, Markus; Hopke, Philip K.; Laj, Paolo G.; Wiedensohler, Alfred; Alados-Arboledas, Lucas; Bastian, Susanne; Chazeau, Benjamin; Maria, Alvaro Clemente; Colombi, Cristina; Costabile, Francesca; Green, David C.; Hueglin, Christoph; Liakakou, Eleni; Luoma, Krista; Listrani, Stefano; Mihalopoulos, Nikos; Marchand, Nicolas; Močnik, Griša; Niemi, Jarkko V; Ondráček, Jakub; Petit, Jean Eudes; Rattigan, Oliver V.; Reche, Cristina; Timonen, Hilkka; Titos, Gloria; Tremper, Anja H.; Vratolis, Stergios; Vodicka, Petr; Funes, Eduardo Yubero; Zíková, Naděžda; Harrison, Roy M.; Petäjä, Tuukka; Alastuey, Andrés; Querol, Xavier

A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial–temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.

Elsevier

2024

Recommendations for the revision of the ambient air quality directives (AAQDs) regarding modelling applications

Thunis, P.; Janssen, S.; Wesseling, J.; Piersanti, A.; Pirovano, G.; Tarrasón, Leonor; Martin, F.; Lopez-Aparicio, Susana; Bessagnet, B.; Guevara, M.; Monteiro, A.; Clappier, A.; Pisoni, E.; Guerreiro, Cristina; Ortiz, A. G.

The Forum for Air Quality Modelling (FAIRMODE) is a European network to exchange experiences and competences on the use of air quality models in the context of the Ambient Air Quality Directives. Its purpose is to identify and promote the use of good practices for air quality modelling and to propose harmonized ways to assess the quality of model-based air quality applications by EU Member States. The recommendations in this document are part of FAIRMODE’s contribution to the on-going revision of the EU Ambient Air Quality Directives (Directives 2008/50/EC and 2004/107/EC, hereafter AAQDs) initiated by the European Commission and are an update of the previous recommendations to the Fitness check of those Directives (Thunis et al. 2019). This document builds on the existing recommendations from FAIRMODE provided in 2019 regarding modelling applications. The current document has been revised in view of the latest consensus on the maturity of modelling applications and their uses for air quality management purposes. It provides strategic and technical recommendations where there is significant level consensus within the FAIRMODE expert community. It identifies how and where these recommendations may be included in the context of the revision of the AAQDs. These recommendations would require additional work of Member States were they to be implemented and would have implications for the work of the FAIRMODE network concerning the development of relevant guidance documents to support the recommendations.

Publications Office of the European Union

2022

Recommendations for the spatial assessment of air quality resulting from the FP6 EU project Air4EU.

Denby, B.; Larssen, S.; Builtjes, P.; Keuken, M.; Sokhi, R.; Moussiopoulus, N.; Douros, J.; Borrego, C.; Costa, A.M.

2011

Recommendations on spatial assessment of air quality resulting from the FP6 EU project AIR4EU.

Denby, B.; Larssen, S.; Builtjes, P.; Keuken, M.; Sokhi, R.; Moussiopoulos, N.; Douros, J.; Borrego, C.; Costa, A.M.; Pregger, T.

2007

Recommendations on spatial assessment of air quality resulting from the FP6 EU project AIR4EU. Powerpoint presentation. NILU F

Denby, B.; Larssen, S.; Builtjes, P.; Keuken, M.; Sokhi, R.; Moussiopoulos, N.; Douros, J.; Borrego, C.; Costa, A.M.; Pregger, T.

2007

Recommendations regarding modelling applications within the scope of the ambient air quality directives

Thunis, Philippe; Janssen, S.; Wesseling, J.; Belis, Claudio A.; Pirovano, G.; Tarrasón, Leonor; Guevara, M.; Monteiro, A.; Clappier, A.; Pisoni, E.; Guerreiro, Cristina; Ortiz, Alberto González

The Forum for Air Quality Modelling (FAIRMODE) is a European network to exchange experiences and competence on the use of air quality models in the context of the Ambient Air Quality Directives. Its purpose is to identify and promote the use of good practices for air quality modelling and to propose harmonized ways to assess the quality of model-based air quality applications by EU Member States. The recommendations in this document are part of FAIRMODE’s contribution to the on-going fitness check of the two EU Ambient Air Quality Directives (Directives 2008/50/EC and 2004/107/EC) initiated by the European Commission. This document provides technical recommendations where the scientific consensus within FAIRMODE indicates that robust conclusions can be drawn, and identifies follow up actions. These recommendations might potentially affect the work of Member States in case they may be requested to be implemented. They may also be relevant to the outcome and follow-up to the fitness check of the Air Quality Directives. Finally, they have implications for the work of the FAIRMODE network itself, and guide future technical discussions

Publications Office of the European Union

2019

Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results.

von Hobe, M.; Bekki, S.; Borrmann, S.; Cairo, F.; D'Amato, F.; Di Donfrancesco, G.; Dörnbrack, A.; Ebersoldt, A.; Ebert, M.; Emde, C.; Engel, I.; Ern, M.; Frey, W.; Genco, S.; Griessbach, S.; Grooß, J.-U.; Gulde, T.; Günther, G.; Hösen, E.; Hoffmann, L.; Homonnai, V.; Hoyle, C. R.; Isaksen, I. S. A.; Jackson, D. R.; Jánosi, I. M.; Jones, R. L.; Kandler, K.; Kalicinsky, C.; Keil, A.; Khaykin, S. M.; Khosrawi, F.; Kivi, R.; Kuttippurath, J.; Laube, J. C.; Lefèvre, F.; Lehmann, R.; Ludmann, S.; Luo, B. P.; Marchand, M.; Meyer, J.; Mitev, V.; Molleker, S.; Müller, R.; Oelhaf, H.; Olschewski, F.; Orsolini, Y.; Peter, T.; Pfeilsticker, K.; Piesch, C.; Pitts, M. C.; Poole, L. R.; Pope, F. D.; Ravegnani, F.; Rex, M.; Riese, M.; Röckmann, T.; Rognerud, B.; Roiger, A.; Rolf, C.; Santee, M. L.; Scheibe, M.; Schiller, C.; Schlager, H.; Siciliani de Cumis, M.; Sitnikov, N.; Søvde, O. A.; Spang, R.; Spelten, N.; Stordal, F.; Suminska-Ebersoldt, O.; Ulanovski, A.; Ungermann, J.; Viciani, S.; Volk, C. M.; vom Scheidt, M.; von der Gathen, P.; Walker, K.; Wegner, T.; Weigel, R.; Weinbruch, S.; Wetzel, G.; Wienhold, F. G.; Wohltmann, I.; Woiwode, W.; Young, I. A. K.; Yushkov, V.; Zobrist, B.; Stroh, F.

2013

Reconciliation of methane emissions in European national inventory reports with atmospheric measurements

Houweling, Sander; Berchet, Antoine; Brunner, Dominik; Cheliotis, Ioannis; Fenjuan, Wang; Ioannidis, Elefterios; Koch, Frank-Thomas; Lin, Hong; Maksyutov, Shamil; Meesters, Antoon; Monteil, Guillaume; Pison, Isabelle; Ren, Ge; Scholze, Marko; Sollum, Espen; Steiner, Michael; Thompson, Rona Louise; Tsuruta, Aki

2024

Reconciling reported and unreported HFC emissions with atmospheric observations.

Lunt, M.F.; Rigby,M.; Ganesan, A.L.; Manning, A.J.; Prinn, R.G.; O'Doherty, S.; Mühle, J.; Harth, C.M.; Salameh, P.K.; Arnold, T.; Weiss, R.F.; Saito, T.; Yokouchi, Y.; Krummel, P.B.; Steele, L.P.; Fraser, P.J.; Li, S.; Park, S.; Reimann, S.; Vollmer, M.K.; Lunder, C.; Hermansen, O.; Schmidbauer, N.; Maione, M.; Arduini, J.; Young, D.; Simmonds, P.G.

2015

Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe.

Evangeliou, N.; Hamburger, T.; Talerko, N.; Zibtsev, S.; Bondar, Y.; Stohl, A.; Balkanski, Y.; Mousseau, T.A.; Møller, A.P.

2016

Reconstructing the volcanic eruption source term for Eyjafjlallajökull using inverse modeling and satellite retrievals. NILU F

Prata, F.; Stohl, A.; Eckhardt, S.; Kristiansen, N.; Stebel, K.; Clarisse, L.; Seibert, P.; Thomas, H.E.

2010

Publikasjon
År
Kategori