Fant 9888 publikasjoner. Viser side 297 av 396:
2019
Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components
Norwegian Meteorological Institute
2019
Land cover and traffic data inclusion in PM mapping
Annual European-wide air quality maps have been produced using geostatistical techniques for many years and is based primarily on air quality measurements. The mapping method follows in principle the sequence of regression – interpolation – merging. It combines monitoring data, chemical transport model outputs and other supplementary data (such as altitude and meteorology) using a linear regression model followed by kriging of its residuals (‘residual kriging’), applied separately for rural and urban background areas. The rural and urban background map layers are
subsequently merged on basis of population densities into one final concentration map for Europe.
Inclusion of land cover and road type data among the set of the supplementary data demonstrated to improve the quality of urban and rural background layers in the NO2 map and is currently routinely applied in the NO2 mapping. In addition, an urban traffic map layer based on the measurement data from traffic stations is constructed and takes art in the merging process with the rural and urban background map layers to reach a final NO2 map.
This report examines now – due to its proved added value in the NO2 mapping – whether for PM10 and PM2.5 the similar method provides also sufficient added value to include it on a routinely basis in the production of the final concentration map and population exposure estimates.. It concerns the inclusion of land cover data and road type data in the background map layers, as well as the inclusion of the urban traffic layer based on traffic measurement stations. The analysis is done based on 2015 data, being the most recent year with all data needed available when this study started.
ETC/ACM
2019
Assessment of additives used in plastic in seabirds
Liver samples from 10 herring gulls (Larus argentatus) were investigated for a broad range of chemicals used as additives in plastic products. The aim of this study was to clarify if the ingestion of plastic by seabirds would cause additives to leach out and get taken up by the organism, posing a potential harm. After chemical trace analyses of the liver samples, considerable concentrations of S/MCCPs and dechloranes were detected. Of the other additive classes analysed for, only sporadic detections were observed. In general, the results from chemical analysis of additives used in plastic do not indicate a relationship between gastric contents (plastic occurrence in the stomach) and additive concentration in the liver, in respect to the chemical compounds investigated here.
NILU
2019
2019
Arctic-breeding geese acquire resources for egg production from overwintering and breeding grounds, where pollutant exposure may differ. We investigated the effect of migration strategy on pollutant occurrence of lipophilic polychlorinated biphenyls (PCBs) and protein-associated poly- and perfluoroalkyl substances (PFASs) and mercury (Hg) in eggs of herbivorous barnacle geese (Branta leucopsis) from an island colony on Svalbard. Stable isotopes (δ13C and δ15N) in eggs and vegetation collected along the migration route were similar. Pollutant concentrations in eggs were low, reflecting their terrestrial diet (∑PCB = 1.23 ± 0.80 ng/g ww; ∑PFAS = 1.21 ± 2.97 ng/g ww; Hg = 20.17 ± 7.52 ng/g dw). PCB concentrations in eggs increased with later hatch date, independently of lipid content which also increased over time. Some females may remobilize and transfer more PCBs to their eggs, by delaying migration several weeks, relying on more polluted and stored resources, or being in poor body condition when arriving at the breeding grounds. PFAS and Hg occurrence in eggs did not change throughout the breeding season, suggesting migration has a greater effect on lipophilic pollutants. Pollutant exposure during offspring production in Arctic-breeding migrants may result in different profiles, with effects becoming more apparent with increasing trophic levels.
2019
Global and regional trends of atmospheric sulfur
The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.
Nature Portfolio
2019
2019
2019
2019
2019
The concept of essential use for determining when uses of PFASs can be phased out
Because of the extreme persistence of per- and polyfluoroalkyl substances (PFASs) and their associated risks, the Madrid Statement argues for stopping their use where they are deemed not essential or when safer alternatives exist. To determine when uses of PFASs have an essential function in modern society, and when they do not, is not an easy task. Here, we: (1) develop the concept of “essential use” based on an existing approach described in the Montreal Protocol, (2) apply the concept to various uses of PFASs to determine the feasibility of elimination or substitution of PFASs in each use category, and (3) outline the challenges for phasing out uses of PFASs in society. In brief, we developed three distinct categories to describe the different levels of essentiality of individual uses. A phase-out of many uses of PFASs can be implemented because they are not necessary for the betterment of society in terms of health and safety, or because functional alternatives are currently available that can be substituted into these products or applications. Some specific uses of PFASs would be considered essential because they provide for vital functions and are currently without established alternatives. However, this essentiality should not be considered as permanent; rather, constant efforts are needed to search for alternatives. We provide a description of several ongoing uses of PFASs and discuss whether these uses are essential or non-essential according to the three essentiality categories. It is not possible to describe each use case of PFASs in detail in this single article. For follow-up work, we suggest further refining the assessment of the use cases of PFASs covered here, where necessary, and expanding the application of this concept to all other uses of PFASs. The concept of essential use can also be applied in the management of other chemicals, or groups of chemicals, of concern.
Royal Society of Chemistry (RSC)
2019
2019
The Forum for Air Quality Modelling (FAIRMODE) is a European network to exchange experiences and competence on the use of air quality models in the context of the Ambient Air Quality Directives. Its purpose is to identify and promote the use of good practices for air quality modelling and to propose harmonized ways to assess the quality of model-based air quality applications by EU Member States. The recommendations in this document are part of FAIRMODE’s contribution to the on-going fitness check of the two EU Ambient Air Quality Directives (Directives 2008/50/EC and 2004/107/EC) initiated by the European Commission. This document provides technical recommendations where the scientific consensus within FAIRMODE indicates that robust conclusions can be drawn, and identifies follow up actions. These recommendations might potentially affect the work of Member States in case they may be requested to be implemented. They may also be relevant to the outcome and follow-up to the fitness check of the Air Quality Directives. Finally, they have implications for the work of the FAIRMODE network itself, and guide future technical discussions
Publications Office of the European Union
2019