Fant 9759 publikasjoner. Viser side 303 av 391:
2001
Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attention
In environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori quality information about the sensor device without using complex and resource-demanding data assimilation techniques. Both ordinary kriging and the general regression neural network (GRNN) are integrated into this attention with their learnable parameters based on deep learning architectures. We evaluate this method using three static phenomena with different complexities: a case related to a simplistic phenomenon, topography over an area of 196 and to the annual hourly concentration in 2019 over the Oslo metropolitan region (1026 ). We simulate networks of 100 synthetic sensor devices with six characteristics related to measurement quality and measurement spatial resolution. Generally, outcomes are promising: we significantly improve the metrics from baseline geostatistical models. Besides, distance attention using the Nadaraya–Watson kernel provides as good metrics as the attention based on the kriging system enabling the possibility to alleviate the processing cost for fusion of sparse data. The encouraging results motivate us in keeping adapting distance attention to space-time phenomena evolving in complex and isolated areas.
Cambridge University Press
2024
2014
2016
Data fusion in the environmental domain. IFIP Advances in Information and Communication Technology, 413
2013
Data fusion for enhancing urban air quality modeling using large-scale citizen science data
Rapid urbanization has led to many environmental issues, including poor air quality. With urbanization set to continue, there is an urgent need to mitigate air pollution and minimize its adverse health impacts. This study aims to advance urban air quality management by integrating a dispersion model output with large-scale citizen science data, collected over a 4-week period by 642 participants in Cork City, Ireland. The dispersion model enabled the identification of major sources of NO2 air pollution while also addressing gaps in regulatory monitoring efforts. Integrating the diffusion tube data with the dispersion model output, we developed a data fusion model that captured localized fluctuations in air quality, with increases of up to 22μg/m3 observed at major road intersections. The data fusion model provided a more accurate representation of NO2 concentrations, with estimates within 1.3μg/m3 of the regulatory monitoring measurement at an urban traffic location, an improvement of 11.7μg/m3 from the priori dispersion model. This enhanced accuracy enabled a more precise assessment of the population exposure to air pollution. The data fusion model showed a higher population exposure to NO2 compared to the dispersion model, providing valuable insights that can inform environmental health policies aimed at safeguarding public health.
Elsevier
2024