Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10084 publikasjoner. Viser side 328 av 404:

Publikasjon  
År  
Kategori

European air quality maps for 2019. PM10, PM2.5, Ozone, NO2 and NOx Spatial estimates and their uncertainties

Horálek, Jan; Vlasakova, Leona; Schreiberova, Marketa; Markova, Jana; Schneider, Philipp; Kurfürst, Pavel; Tognet, Frédéric; Schovánková, Jana; Vlcek, Ondrej

The report provides the annual update of the European air quality concentration maps and population exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, SOMO35, SOMO10) and NO2 (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2019. The report contains also Phytotoxic ozone dose (POD) for wheat, potato and tomato maps and NOx annual average map for 2019. The POD map for tomato is presented for the first time in this regular mapping report. The trends in exposure estimates in the period 2005–2019 are summarized. The analysis is based on the interpolation of the annual statistics of the 2019 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database. The mapping method is the Regression – Interpolation – Merging Mapping (RIMM). It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps. It also presents concentration change in 2019 in comparison to the five-year average 2014-2018 using the difference maps.

ETC/ATNI

2021

An update on low-cost sensors for the measurement of atmospheric composition

Peltier, Richard E.; Castell, Nuria; Clements, Andrea L.; Dye, Tim; Hüglin, Christoph; Kroll, Jesse H.; Lung, Shih-Chun Candice; Ning, Zhi; Parsons, Matthew; Penza, Michèle; Reisen, Fabienne; Scheidemesser, Erika von; Arfire, Adrian; Boso, Àlex; Fu, Qingyan; Hagan, David; Henshaw, Geoff; Jayaratne, Rohan; Jones, Roderic; Kelly, Kerry; Kilaru, Vasu; Mead, Iq; Morawska, Lidia; Papale, Dario; Polidori, Andrea; Querol, Xavier; Seddon, Jessica; Schneider, Philipp; Tarasova, Oksana; Yu, Alfred LC; Zellweger, Christoph

The report reflects on the state of the art in terms of accuracy, reliability and reproducibility of different sensors used for the measurements of reactive and greenhouse gases, and aerosols, along with the key analytical principles and what has been learned so far about low-cost sensors from both laboratory studies and real-world tests (up to August 2020). In some cases, scientific literature that had been accepted, but not yet published in a final form, was included in this review. Some national and international government documents were also included in this synthesis. The report includes eight distinct sections, including an Introduction to the Report, Main Principles and Components, Evaluation Activities, Sensor Performance, Communicating LCS to Society, and Expert Consensus and Advice. Communicating LCS to Society is a new section to the original 2018 report and includes a consensus viewpoint on strategies for communicating LCS data and technologies more broadly to the lay public. This report also includes a set of specific expert consensus recommendations for LCS users across different user groups.

WMO

2021

Low-cost sensors and networks. Overview of current status by the Norwegian Reference Laboratory for Air Quality.

Castell, Nuria

The increase of the commercial availability of low-cost sensor technology to monitor atmospheric composition is contributing to the rapid adoption of such technology by both public authorities and self-organized initiatives (e.g. grass root movements, citizen science, etc.). Low-cost sensors (LCS) can provide real time measurements, in principle at lower cost than traditional monitoring reference stations, allowing higher spatial coverage than the current reference methods. However, data quality from LCS is lower than the one provided by reference methods. Also, the total cost of deploying a dense sensor network needs to consider the costs associated not only to the sensor platforms but also the costs associated for instance with deployment, maintenance and data transmission.
This report aims to give an overview of the current status of LCS technology in relation to commercialization, measuring capabilities and data quality, with especial emphasis on the challenges associated to the use of this novel technology, and the opportunities they open when correctly used.

NILU

2021

Kunnskapsstatus for tverrfaglig klima- og miljøforskning

Skjellum, Solrun Figenschau; Ruud, Audun; Slettemark, Brita; Bartonova, Alena; Lund, Mariann; Singsaas, Frode Thomassen; Aspøy, Håkon; Grossberndt, Sonja; Enge, Caroline; Sander, Gunnar

På oppdrag fra Klima- og miljødepartementet har vi i dette arbeidet svart ut en rekke spørsmål om tverrfaglig klima- og miljøforskning, samt noen spørsmål om transfaglig forskning. Vi har samlet inn data gjennom flere litteratursøk, intervjuer, én spørreundersøkelse, workshop mm. Alle litteratursøk dekker klima og miljøpublikasjoner uavhengig av hvor forskningen er gjort. Alle andre funn fra forskningsmiljøene er avgrenset til grunnforskning og anvendt forskning ved universitetene og forskningsinstitutt som mottar grunnfinansiering. Bruk av klima- og miljøforskning i forvaltningen og involvering av forvaltningen er avgrenset til statlig forvaltning. Det er usikkerhet i våre funn, men funnene vurderes likevel som tilstrekkelig robuste til å svare ut spørsmålene. Vi finner at bruken av begrepet tverrfaglig er mangfoldig. Et bredt antall fag og institusjoner er involvert i slik forskning og det samarbeides mest på tvers av naturvitenskap og samfunnsvitenskap. Vi har funnet at andelen klima- og miljøpublikasjoner som er tverrfaglig på tvers av minst to av naturvitenskap, samfunnsvitenskap, humaniora og rettsvitenskap, er 24 prosent. I Norge oppleves behovet for tverrfaglig klima- og miljøforskning som økende. Den viktigste driveren for økningen er samfunnsbehovene. Det forskes også mer tverrfaglig. Et globalt litteratursøk antyder imidlertid at antall tverrfaglige klima- og miljøpublikasjoner og totalt antall klima- og miljøpublikasjoner øker med omtrent samme takt slik at andelen av publikasjoner som er tverrfaglige, endres i liten grad. Monofaglig praksis er vanligere enn flerfaglig. Flerfaglighet er vanligere enn tverrfaglighet. Det oppleves å være betydelige barrierer for tverrfaglig klima- og miljøforskning. Faglige barrierer og manglende merittering for tverrfaglig forskning løftes spesielt fram, men også andre barrierer er betydelige. Det er relativt liten forskjell i opplevelse av barrierer for forskere ved universitetene og forskningsinstitutter. For transfaglig forskning peker både forvaltning og forskere på mangel på tid som en sentral barriere. Forskning på tverrfaglig og transfaglig forskning øker.

CIENS

2021

In silico unravelling of descriptors for cytotoxicity and genotoxicity for hazard identification of nanomaterials

Yamani, Naouale El; Gromelski, Maciej; Mariussen, Espen; Wyrzykowska, E.; Grabarek, D.; Puzyn, Tomasz; Dusinska, Maria; Rundén-Pran, Elise

2021

Assessment of Low-Cost Particulate Matter Sensor Systems against Optical and Gravimetric Methods in a Field Co-Location in Norway

Vogt, Matthias; Schneider, Philipp; Castell, Nuria; Hamer, Paul David

The increased availability of commercially-available low-cost air quality sensors combined with increased interest in their use by citizen scientists, community groups, and professionals is resulting in rapid adoption, despite data quality concerns. We have characterized three out-the-box PM sensor systems under different environmental conditions, using field colocation against reference equipment. The sensor systems integrate Plantower 5003, Sensirion SPS30 and Alphasense OCP-N3 PM sensors. The first two use photometry as a measuring technique, while the third one is an optical particle counter. For the performance evaluation, we co-located 3 units of each manufacturer and compared the results against optical (FIDAS) and gravimetric (KFG) methods for a period of 7 weeks (28 August to 19 October 2020). During the period from 2nd and 5th October, unusually high PM concentrations were observed due to a long-range transport episode. The results show that the highest correlations between the sensor systems and the optical reference are observed for PM1, with coefficients of determination above 0.9, followed by PM2.5. All the sensor units struggle to correctly measure PM10, and the coefficients of determination vary between 0.45 and 0.64. This behavior is also corroborated when using the gravimetric method, where correlations are significantly higher for PM2.5 than for PM10, especially for the sensor systems based on photometry. During the long range transport event the performance of the photometric sensors was heavily affected, and PM10 was largely underestimated. The sensor systems evaluated in this study had good agreement with the reference instrumentation for PM1 and PM2.5; however, they struggled to correctly measure PM10. The sensors also showed a decrease in accuracy when the ambient size distribution was different from the one for which the manufacturer had calibrated the sensor, and during weather conditions with high relative humidity. When interpreting and communicating air quality data measured using low-cost sensor systems, it is important to consider such limitations in order not to risk misinterpretation of the resulting data.

2021

Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening

Kohl, Yvonne; Biehl, Margit; Spring, Sarah; Hesler, Michelle; Ogourtsov, Vladimir; Todorovic, Miomir; Owen, Joshua; Elje, Elisabeth; Kopecka, Kristina; Moriones, Oscar Hernando; Bastus, Neus G.; Simon, Peter; Dubaj, Tibor; Rundén-Pran, Elise; Puntes, Victor; William, Nicola; Briesen, Hagen von; Wagner, Sylvia; Kapur, Nikil; Mariussen, Espen; Nelson, Andrew; Gabelova, A; Dusinska, Maria; Velten, Thomas; Knoll, Thorsten

Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal‐free risk assessment of new chemicals and drugs. Microfluidic cell‐based devices allow high‐throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal‐free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo‐like in vitro cell cultivation. It is equipped with a wafer‐based silicon chip including integrated electrodes and a microcavity. A proof‐of‐concept using different relevant cell models shows its suitability for label‐free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label‐free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole‐body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.

2021

The Atlantic Multidecadal Variability phase-dependence of teleconnection between the North Atlantic Oscillation in February and the Tibetan Plateau in March

Li, Jingyi; Li, Fei; He, Shengping; Wang, Huijun; Orsolini, Yvan J.

The Tibetan Plateau (TP), referred to as the “Asian water tower,” contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals that the relationship between the February North Atlantic Oscillation (NAO) and March TPSAT is unstable with time and regulated by the phase of the Atlantic multidecadal variability (AMV). The significant out-of-phase connection occurs only during the warm phase of AMV (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO cannot persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO–TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low-frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the southward-shifted storm track, helps maintain the NAO pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic–TP connection in late winter to early spring.

2021

Monitoring of greenhouse gases - methane (CH4) and carbon dioxide (CO2) - modelling of emissions and fluxes

Stebel, Kerstin; Platt, Stephen Matthew; Myhre, Cathrine Lund; Fjæraa, Ann Mari; Thompson, Rona Louise; Pisso, Ignacio; Zwaaftink, Christine Groot; Sollum, Espen; Lopez-Aparicio, Susana; Grythe, Henrik; Tarrasón, Leonor; Kylling, Arve; Schneider, Philipp; Ytre-Eide, Martin

2021

Oceanic long-range transport of organic additives present in plastic products: an overview

Andrade, Helena; Glüge, Juliane; Herzke, Dorte; Ashta, Narain Maharaj; Nayagar, Shwetha Manohar; Scheringer, Martin

Most plastics are made of persistent synthetic polymer matrices that contain chemical additives in significant amounts. Millions of tonnes of plastics are produced every year and a significant amount of this plastic enters the marine environment, either as macro- or microplastics. In this article, an overview is given of the presence of marine plastic debris globally and its potential to reach remote locations in combination with an analysis of the oceanic long-range transport potential of organic additives present in plastic debris. The information gathered shows that leaching of hydrophobic substances from plastic is slow in the ocean, whereas more polar substances leach faster but mostly from the surface layers of the particle. Their high content used in plastic of several percent by weight allows also these chemicals to be transported over long distances without being completely depleted along the way. It is therefore likely that various types of additives reach remote locations with plastic debris. As a consequence, birds or other wildlife that ingest plastic debris are exposed to these substances, as leaching is accelerated in warm-blooded organisms and in hydrophobic fluids such as stomach oil, compared to leaching in water. Our estimates show that approximately 8100–18,900 t of various organic additives are transported with buoyant plastic matrices globally with a significant portion also transported to the Arctic. For many of these chemicals, long-range transport (LRT) by plastic as a carrier is their only means of travelling over long distances without degrading, resulting in plastic debris enabling the LRT of chemicals which otherwise would not reach polar environments with unknown consequences. The transport of organic additives via plastic debris is an additional long-range transport route that should also be considered under the Stockholm Convention.

2021

Author Correction: DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death (Scientific Reports, (2021), 11, 1, (16793), 10.1038/s41598-021-95976-7)

Bonassi, Stefano; Ceppi, Marcello; Møller, Peter; Azqueta, Amaya; Milić, Mirta; Neri, Monica; Brunborg, Gunnar; Godschalk, Roger; Koppen, Gudrun; Langie, Sabine A. S.; Teixeira, João Paulo; Bruzzone, Marco; Silva, Juliana Da; Benedetti, Danieli; Cavallo, Delia; Ursini, Cinzia Lucia; Giovannelli, Lisa; Moretti, Silvia; Riso, Patrizia; Bo’, Cristian Del; Russo, Patrizia; Dobrzyńska, Malgorzata; Goroshinskaya, Irina A.; Surikova, Ekaterina I.; Staruchova, Marta; Barančokova, Magdalena; Volkovova, Katarina; Kažimirova, Alena; Smolkova, Bozena; Laffon, Blanca; Valdiglesias, Vanessa; Pastor, Susana; Marcos, Ricard; Hernández, Alba; Gajski, Goran; Spremo-Potparević, Biljana; Živković, Lada; Boutet-Robinet, Elisa; Perdry, Hervé; Lebailly, Pierre; Perez, Carlos L.; Basaran, Nursen; Nemeth, Zsuzsanna; Safar, Anna; Dusinska, Maria; Collins, Andrew Richard

2021

This Fjord Shows Even Small Populations Create Giant Microfiber Pollution

Herzke, Dorte; Halsband, Claudia (intervjuobjekter); Hester, Jessica Leigh (journalist)

2021

Air Quality in Ny-Ålesund. Monitoring of Local Air Quality 2019 and 2020.

Johnsrud, Mona; Hermansen, Ove; Krejci, Radovan; Tørnkvist, Kjersti Karlsen

The concentrations of the measured components are generally low and below national limit values for the protection of
human health and critical levels for the protection of vegetation. Wind from northern sectors gave the highest average concentrations of nitrogen oxides and sulfur dioxide, which indicates the power station and the harbour as possible sources. We also see single episodes of long-range transport of sulfur dioxide.

NILU

2021

Global GHG Emissions and Budgets

Canadell, Josep G.; Andrew, Robbie; Ciais, Philippe; Davidson, Eric; Davis, Steven; Friedlingstein, Pierre; Jackson, Robert B.; Quéré, Corinne Le; Peters, Glen Philip; Thompson, Rona Louise; Tian, Hanqin; Liu, Zhu

2021

Atmospheric corrosion due to amine emissions from carbon capture plants

Grøntoft, Terje

The atmospheric corrosion due to pure amines emitted from carbon capture plants was investigated. Amine exposure was found to initially inhibit the corrosion of steel, by its film formation and alkalinity, but reduce corrosion product layers and lead to freezing point depression, which could in turn increase the corrosion. Very high amine doses were observed to dissolve the metal without the establishing of a corrosion layer. These effects seem much more pronounced on copper than on steel. Climate and air quality variations affect the steel corrosion much more than the expected maximum amine deposition from carbon capture plant emissions.

2021

Safety assessment of titanium dioxide (E171) as a food additive

Younes, Maged; Aquilina, Gabriele; Castle, Laurence; Engel, Karl-Heinz; Fowler, Paul; Fernandez, Maria Jose Frutos; Fürst, Peter; Gundert-Remy, Ursula; Gürtler, Rainer; Husøy, Trine; Manco, Melania; Mennes, Wim; Moldeus, Peter; Passamonti, Sabina; Shah, Romina; Waalkens-Berendsen, Ine; Wölfle, Detlef; Corsini, Emanuela; Cubadda, Francesco; Groot, Didima De; FitzGerald, Rex; Gunnare, Sara; Gutleb, Arno C.; Mast, Jan; Mortensen, Alicja; Oomen, Agnes; Piersma, Aldert; Plichta, Veronika; Ulbrich, Beate; Loveren, Henk Van; Benford, Diane; Bignami, Margherita; Bolognesi, Claudia; Crebelli, Riccardo; Dusinska, Maria; Marcon, Francesca; Nielsen, Elsa; Schlatter, Josef; Vleminckx, Christiane; Barmaz, Stefania; Carfi, Maria; Civitella, Consuelo; Giarola, Alessandra; Rincon, Ana Maria; Serafimova, Rositsa; Smeraldi, Camilla; Tarazona, Jose; Tard, Alexandra; Wright, Matthew

The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.

2021

Assessing the impacts of citizen-led policies on emissions, air quality and health

Oliveira, Kevin; Rodrigues, Vera; Slingerland, Stephan; Vanherle, Kris; Soares, Joana; Rafael, Sandra; Trozzi, Carlo; Bouman, Evert; Ferreira, José Alexandre; Kewo, Angreine; Nielsen, Per Sieverts; Diafas, Iason; Monteiro, Alexandra; Miranda, Andreia I.; Lopes, Marta Júlia Marques; Hayes, Enda T.

Air pollution is a global challenge, and especially urban areas are particularly affected by acute episodes. Traditional approaches used to mitigate air pollution primarily consider the technical aspects of the problem but not the role of citizen behaviour and day-to-day practices. ClairCity, a Horizon 2020 funded project, created an impact assessment framework considering the role of citizen behaviour to create future scenarios, aiming to improve urban environments and the wellbeing and health of its inhabitants. This framework was applied to six pilot cases: Bristol, Amsterdam, Ljubljana, Sosnowiec, Aveiro Region and Liguria Region, considering three-time horizons: 2025, 2035 and 2050. The scenarios approach includes the Business As Usual (BAU) scenario and a Final Unified Policy Scenarios (FUPS) established by citizens, decision-makers, local planners and stakeholders based on data collected through a citizen and stakeholder co-creation process. Therefore, this paper aims to present the ClairCity outcomes, analysing the quantified impacts of selected measures in terms of emissions, air quality, population exposure, and health. Each case study has established a particular set of measures with different levels of ambition, therefore different levels of success were achieved towards the control and mitigation of their specific air pollution problems. The transport sector was the most addressed by the measures showing substantial improvements for NO2, already with the BAU scenarios, and overall, even better results when applying the citizen-led FUPS scenarios. In some cases, due to a lack of ambition for the residential and commercial sector, the results were not sufficient to fulfil the WHO guidelines. Overall, it was found in all cities that the co-created scenarios would lead to environmental improvements in terms of air quality and citizens’ health compared to the baseline year of 2015. However, in some cases, the health impacts were lower than air quality due to the implementation of the measures not affecting the most densely populated areas. Benefits from the FUPS comparing to the BAU scenario were found to be highest in Amsterdam and Bristol, with further NO2 and PM10 emission reductions around 10%–16% by 2025 and 19%–28% by 2050, compared to BAU.

2021

The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation

Guttu, Sigmund; Orsolini, Yvan J.; Stordal, Frode; Otterå, Odd Helge; Omrani, Nour-Eddine

The stratospheric, tropospheric and surface impacts from the 11 year ultraviolet solar spectral irradiance (SSI) variability have been extensively studied using climate models and observations. Here, we demonstrate using idealized model simulations that the Pacific Decadal Oscillation (PDO), which has been shown to impact the tropospheric and stratospheric circulation from sub-decadal to multi-decadal timescales, strongly modulates the solar-induced atmospheric response. To this end, we use a high-top version of the coupled ocean–atmosphere Norwegian Climate Prediction Model forced by the SSI dataset recommended for Coupled Model Intercomparison Project 6. We perform a 24-member ensemble experiment over the solar cycle 23 in an idealized framework. To assess the PDO modulation of the solar signal, we divide the model data into the two PDO phases, PDO+ and PDO−, for each solar (maximum or minimum) phase. By compositing and combining the four categories, we hence determine the component of the solar signal that is independent of the PDO and the modulation of the solar signal by the PDO, along with the solar signal in each PDO phase. Reciprocally, we determine the PDO effect in each solar phase. Our results show that the intensification of the polar vortex under solar maximum is much stronger in the PDO− phase. This signal is transferred into the troposphere, where we find a correspondingly stronger polar jet and weaker Aleutian Low. We further show that the amplification of the solar signal by the PDO− phase is driven by anomalous meridional advection of solar-induced temperature anomalies over northern North America and the North Pacific, which contributes to a decreased meridional eddy heat flux and hence to a decreased vertical planetary wave flux into the stratosphere.

2021

Slow Eastward-Propagating Planetary Waves Prior to Sudden Stratospheric Warmings

Rhodes, Christian Todd; Limpasuvan, Varavut; Orsolini, Yvan J.

2021

EMEP-CCC status presentation

Tørseth, Kjetil

2021

Utslipp til luft og miljøpåvirkning fra branner

Berglen, Tore Flatlandsmo; Schlabach, Martin; Tønnesen, Dag

2021

Publikasjon
År
Kategori