Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10007 publikasjoner. Viser side 337 av 401:

Publikasjon  
År  
Kategori

MercuNorth–monitoring mercury in pregnant women from the Arctic as a baseline to assess the effectiveness of the Minamata Convention

Adlard, Bryan; Lemire, Mélanie; Bonefeld-Jørgensen, Eva Cecilie; Long, Manhai; Ólafsdóttir, Kristín; Odland, Jon Øyvind; Rautio, Arja; Myllynen, Päivi; Sandanger, Torkjel M; Dudarev, Alexey A.; Bergdahl, Ingvar A.; Wennberg, Maria; Berner, James; Ayotte, Pierre

Exposure to mercury (Hg) is a global concern, particularly among Arctic populations that rely on the consumption of marine mammals and fish which are the main route of Hg exposure for Arctic populations.The MercuNorth project was created to establish baseline Hg levels across several Arctic regions during the period preceding the Minamata Convention. Blood samples were collected from 669 pregnant women, aged 18–44 years, between 2010 and 2016 from sites across the circumpolar Arctic including Alaska (USA), Nunavik (Canada), Greenland, Iceland, Norway, Sweden, Northern Lapland (Finland) and Murmansk Oblast (Russia). Descriptive statistics were calculated, multiple pairwise comparisons were made between regions, and unadjusted linear trend analyses were performed.Geometric mean concentrations of total Hg were highest in Nunavik (5.20 µg/L) and Greenland (3.79 µg/L), followed by Alaska (2.13 µg/L), with much lower concentrations observed in the other regions (ranged between 0.48 and 1.29 µg/L). In Nunavik, Alaska and Greenland, blood Hg concentrations have decreased significantly since 1992, 2000 and 2010 respectively with % annual decreases of 4.7%, 7.5% and 2.7%, respectively.These circumpolar data combined with fish and marine mammal consumption data can be use

2021

Risk Governance council (NMBP-13)

Groenewold, Monique; Dusinska, Maria; Scott-Fordsmand, Janeck J

2021

Maternal Transfer and Occurrence of Siloxanes, Chlorinated Paraffins and Legacy POPs in Herring Gulls (Larus argentatus) of Different Urban Influence

Knudtzon, Nina Cathrine; Thorstensen, Helene; Ruus, Anders; Helberg, Morten; Bæk, Kine; Enge, Ellen Katrin; Borgå, Katrine

2021

Application of the comet assay for the evaluation of DNA damage in mature sperm

Gajski, Goran; Ravlić, Sanda; Godschalk, Roger; Collins, Andrew Richard; Dusinska, Maria; Brunborg, Gunnar

2021

Tomme flyplasser og færre flyturer har lite å si for klimaet

Platt, Stephen Matthew; Andrew, Robbie (intervjuobjekter); Grønning, Trygve (journalist)

2021

Microfiber emissions from wastewater effluents: abundance, transport behavior and exposure risk for biota in an arctic fjord

Herzke, Dorte; Ghaffari, Peygham; Sundet, Jan Henry; Tranang, Caroline Aas; Halsband, Claudia

Microfibers (MF) are one of the major classes of microplastic found in the marine environment on a global scale. Very little is known about how they move and distribute from point sources such as wastewater effluents into the ocean. We chose Adventfjorden near the settlement of Longyearbyen on the Arctic Svalbard archipelago as a case study to investigate how microfibers emitted with untreated wastewater will distribute in the fjord, both on a spatial and temporal scale. Fiber abundance in the effluent was estimated from wastewater samples taken during two one-week periods in June and September 2017. Large emissions of MFs were detected, similar in scale to a modern WWTP serving 1.3 million people and providing evidence of the importance of untreated wastewater from small settlements as major local sources for MF emissions in the Arctic. Fiber movement and distribution in the fjord mapped using an online-coupled hydrodynamic-drift model (FVCOM-FABM). For parameterizing a wider spectrum of fibers from synthetic to wool, four different density classes of MFs, i.e., buoyant, neutral, sinking, and fast sinking fibers are introduced to the modeling framework. The results clearly show that fiber class has a large impact on the fiber distributions. Light fibers remained in the surface layers and left the fjord quickly with outgoing currents, while heavy fibers mostly sank to the bottom and deposited in the inner parts of the fjord and along the northern shore. A number of accumulation sites were identified within the fjord. The southern shore, in contrast, was much less affected, with low fiber concentrations throughout the modeling period. Fiber distributions were then compared with published pelagic and benthic fauna distributions in different seasons at selected stations around the fjord. The ratios of fibers to organisms showed a very wide range, indicating hot spots of encounter risk for pelagic and benthic biota. This approach, in combination with in-situ ground-truthing, can be instrumental in understanding microplastic pathways and fate in fjord systems and coastal areas and help authorities develop monitoring and mitigation strategies for microfiber and microplastic pollution in their local waters.

Frontiers Media S.A.

2021

Vedfyring ga høy luftforurensning

Grythe, Henrik (intervjuobjekt)

2021

INOVYN Norge AS. Vurdering av dioksinutslipp.

Berglen, Tore Flatlandsmo; Schlabach, Martin

NILU

2021

Transport Non-exhaust PM-emissions. An overview of emission estimates, relevance, trends and policies.

Vanherle, Kris; Lopez-Aparicio, Susana; Grythe, Henrik; Lükewille, Anke; Unterstaller, Andreas; Mayeres, Inge

The report holds a comprehensive literature review on the non-exhaust PM emission from transport. All types of wear particles are considered (brake, tyre, road surface) and all modes (road, rail, aviation), with strong emphasis on road. The report serves as an input to review current emission inventories, summarizing the current emission estimates, the estimation methodologies, uncertainties and future trends, briefly zooming in on the relevance of electric vehicles. The report considers both air quality as well as the relevance of non-exhaust emission as a source of microplastics. To conclude, the report includes a brief overview of technological and policy options to reduce the environmental impact.

ETC/ATNI

2021

Beregning av luftkvalitet ved Bjørnheimveien 26

Tønnesen, Dag Arild; Weydahl, Torleif

NILU har blitt engasjert av Prem Partners II A/S for å vurdere utbredelse av luftsoner for dagens situasjon og en framtidig situasjon med foreslått boligblokk i Bjørnheimveien 26. Det er anvendt en Gaussisk spredningsmodell for linjekilder (Hiway-2). Når det tas hensyn til at E6 går på bru ved det aktuelle området, viser beregningene et vesentlig lavere konsentrasjonsnivå og dermed mindre utbredelse av rød og gul luftsone på bakkenivå. Videre viser beregningene at skjermingseffekten for eksisterende bebyggelse av en ny bygning er marginal. Dersom de samme forutsetningene om høyde av veg og høyde av terreng legges til grunn, viser beregningene god overenstemmelse med eksisterende luftsonekart.

NILU

2021

Målinger og beregning av lukt fra slamlager ved Solgård Avfallsplass i Moss

Berglen, Tore Flatlandsmo; Tønnesen, Dag; Schmidbauer, Norbert; Teigland, Even Kristian

NILU

2021

Standardisation of mutagenicity testing approaches, tailored to the evaluation of engineered nanomaterials

Burgum, Michael J.; Yamani, Naouale El; Sosnowska, Anita; Stolinski, Filip; Longhin, Eleonora Marta; Mariussen, Espen; Rundén-Pran, Elise; Jenkins, Gareth; Clift, Martin J. D.; Puzyn, Tomasz; Dusinska, Maria; Doak, Shareen H.

2021

Spatiotemporal Patterns in Data Availability of the Sentinel-5P NO2 Product over Urban Areas in Norway

Schneider, Philipp; Hamer, Paul David; Kylling, Arve; Shetty, Shobitha; Stebel, Kerstin

Due to its comparatively high spatial resolution and its daily repeat frequency, the tropospheric nitrogen dioxide product provided by the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor platform has attracted significant attention for its potential for urban-scale monitoring of air quality. However, the exploitation of such data in, for example, operational assimilation of local-scale dispersion models is often complicated by substantial data gaps due to cloud cover or other retrieval limitations. These challenges are particularly prominent in high-latitude regions where significant cloud cover and high solar zenith angles are often prevalent. Using the example of Norway as a representative case for a high-latitude region, we here evaluate the spatiotemporal patterns in the availability of valid data from the operational TROPOMI tropospheric nitrogen dioxide (NO2) product over five urban areas (Oslo, Bergen, Trondheim, Stavanger, and Kristiansand) and a 2.5 year period from July 2018 through November 2020. Our results indicate that even for relatively clean environments such as small Norwegian cities, distinct spatial patterns of tropospheric NO2 are visible in long-term average datasets from TROPOMI. However, the availability of valid data on a daily level is limited by both cloud cover and solar zenith angle (during the winter months), causing the fraction of valid retrievals in each study site to vary from 20% to 50% on average. A temporal analysis shows that for our study sites and the selected period, the fraction of valid pixels in each domain shows a clear seasonal cycle reaching a maximum of 50% to 75% in the summer months and 0% to 20% in winter. The seasonal cycle in data availability shows the inverse behavior of NO2 pollution in Norway, which typically has its peak in the winter months. However, outside of the mid-winter period we find the TROPOMI NO2 product to provide sufficient data availability for detailed mapping and monitoring of NO2 pollution in the major urban areas in Norway and see potential for the use of the data in local-scale data assimilation and emission inversions applications.

2021

10-year satellite-constrained fluxes of ammonia improve performance of chemistry transport models

Evangeliou, Nikolaos; Balkanski, Yves; Eckhardt, Sabine; Cozic, Anne; Damme, Martin Van; Coheur, Pierre-François; Clarisse, Lieven; Shephard, Mark W.; Cady-Pereira, Karen; Hauglustaine, Didier

In recent years, ammonia emissions have been continuously increasing, being almost 4 times higher than in the 20th century. Although an important species, as its use as a fertilizer sustains human living, ammonia has major consequences for both humans and the environment because of its reactive gas-phase chemistry that makes it easily convertible to particles. Despite its pronounced importance, ammonia emissions are highly uncertain in most emission inventories. However, the great development of satellite remote sensing nowadays provides the opportunity for more targeted research on constraining ammonia emissions. Here, we used satellite measurements to calculate global ammonia emissions over the period 2008–2017. Then, the calculated ammonia emissions were fed to a chemistry transport model, and ammonia concentrations were simulated for the period 2008–2017.

The simulated concentrations of ammonia were compared with ground measurements from Europe, North America and Southeastern Asia, as well as with satellite measurements. The satellite-constrained ammonia emissions represent global concentrations more accurately than state-of-the-art emissions. Calculated fluxes in the North China Plain were seen to be more increased after 2015, which is not due to emission changes but due to changes in sulfate emissions that resulted in less ammonia neutralization and hence in larger atmospheric loads. Emissions over Europe were also twice as much as those in traditional datasets with dominant sources being industrial and agricultural applications. Four hot-spot regions of high ammonia emissions were seen in North America, which are characterized by high agricultural activity, such as animal breeding, animal farms and agricultural practices. South America is dominated by ammonia emissions from biomass burning, which causes a strong seasonality. In Southeastern Asia, ammonia emissions from fertilizer plants in China, Pakistan, India and Indonesia are the most important, while a strong seasonality was observed with a spring and late summer peak due to rice and wheat cultivation. Measurements of ammonia surface concentrations were better reproduced with satellite-constrained emissions, such as measurements from CrIS (Cross-track Infrared Sounder).

2021

Historical dry deposition of air pollution in the urban background in Oslo, Norway, compared to Western European data

Grøntoft, Terje

The historical (1835–2020) dry deposition of major air pollutants (SO2, NOx, O3 and PM2.5) in the urban background in Oslo, Norway, in a situation that could represent the building facades, was approximated from reported fuel combustion, emission factors, air concentrations since 1960, and dry deposition velocities. The annual accumulated dry deposition (and thus not considering the removal processes) of the pollutants, together, was found to have varied from about 2.3 to 27 g m−2, with the maximum in the 1960s caused by high SO2 emissions from the combustion of fuel oils, and with 1.6 kg m−2 having deposited over all the years. The deposition of PM2.5 was found to have dominated from 1835, have increased to a maximum in 1875 and then slowly decreased. The SO2 deposition decreased to a low value around 1990. The NOx deposition was also at its highest in the 1960s to about 1970, it became the largest from the 1980s, and then showed a clear decrease from about 2010. The O3 deposition was lower in the years of the maximum total and NOx deposition. The dry deposition of O3 and NOx were found to be about similar in 2020, more than two times that of PM2.5 and more than four times that of SO2. The trends of the NOx emissions were found to reflect the relative (1975) and absolute (∼2000) turning points of the environmental Kuznets curves (EKC) that has been suggested for Norway, whereas the trend of the SO2 emissions seems to have “shortcut” this development by the strong regulations in the emissions from 1970 that lead to near simultaneous relative and absolute reductions. The gradual decrease of the PM2.5 emissions from about 1945 seems to correspond with the decrease in combustion energy intensity in the economy as wood was substituted with more energy efficient fuels and then with the continued reduction in the wood burning.

2021

Comparing National Greenhouse Gas Budgets Reported in UNFCCC Inventories against Atmospheric Inversions

Deng, Zhu; Ciais, Philippe; Tzompa-Sosa, Zitely A.; Saunois, Marielle; Qiu, Chunjing; Tan, Chang; Sun, Taochun; Ke, Piyu; Cui, Yanan; Tanaka, Katsumasa; Lin, Xin; Thompson, Rona Louise; Tian, Hanqin; Yao, Yuanzhi; Huang, Yuanyuan; Lauerwald, Ronny; Jain, Atul K.; Xu, Xiaoming; Bastos, Ana; Sitch, Stephen; Palmer, Paul I.; Lauvaux, Thomas; d'Aspremont, Alexandre; Giron, Clément; Benoit, Antoine; Poulter, Benjamin; Chang, Jinfeng; Petrescu, Ana Maria Roxana; Davis, Steven J.; Liu, Zhu; Grassi, Giacomo; Albergel, Clement; Chevallier, Frederic

2021

Benzo(a)pyrene (BaP) annual mapping. Evaluation of its potential regular updating.

Horálek, Jan; Schreiberova, Marketa; Schneider, Philipp

The report examines the potential regular production of benzo(a)pyrene (BaP) maps at the European scale in line with the operational production of other air quality maps. Stations measuring BaP are relatively scarce at the European scale, so in order to extend the spatial coverage, so-called pseudo station data have been calculated and used together with the actual BaP measurement data. These pseudo station data are derived from PM2.5 or PM10 measurements in locations with no BaP observations.

ETC/ATNI

2021

Trick or treat? Ingestion of biofouled plastic fibres by sea urchins

Halsband, Claudia; Abrahams, Alexandra Kate; Bourgeon, Sophie; Herzke, Dorte

2021

EBAS Data Licence

Tørseth, Kjetil; Fiebig, Markus; Myhre, Cathrine Lund

2021

Analysis of Member States’ 2021 GHG projections. Submitted under Art 38 (1)(b) of the Regulation on the Governance of the Energy Union and Climate Action (EU) 2018/1999.

Schmid, Carmen; Wartecker, Georg; Neier, Henrik; Bouman, Evert; Ebrahimi, Babak; Vo, Dam Thanh; Brook, Rosie; Raoult, Justine; Dauwe, Tom; Maris, Kelsey van; Esparrago, Javier

This report provides a summary of the quality analysis of the EU Member States’ submission under 18 (1) (b) of the Regulation on the Governance of the Energy Union and Climate Action (EU) 2018/1999 conducted in 2021. Under this obligation EU Member States have to submit updated GHG projections and related information biennially. The reported information undergoes several phases of QA/QC checks consisting of checks on timeliness, accuracy, completeness, consistency and comparability. Details on the underlying QA/QC procedure are described in ETC/CME Eionet Report 7/2021.

ETC/CME

2021

Growing Atmospheric Emissions of Sulfuryl Fluoride

Gressent, Alicia; Rigby, Matthew; Ganesan, Anita L.; Prinn, Ronald G.; Manning, Alistair J.; Mühle, Jens; Salameh, Peter K.; Krummel, Paul; Fraser, Paul J.; Steele, Paul; Mitrevski, Blagoj; Weiss, Ray F.; Harth, Christina M.; Wang, Ray H.; O'Doherty, S.; Young, Dickon; Park, Sunyoung; Li, S.; Yao, Bo; Reimann, Stefan; Vollmer, Martin K.; Maione, Michela; Arduini, Jgor; Lunder, Chris Rene

The potent greenhouse gas sulfuryl fluoride (SO2F2) is increasingly used as a fumigant, replacing methyl bromide, whose structural and soil fumigation uses have been phased out under the Montreal Protocol. We use measurements on archived air samples and in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and a box model of the global atmosphere to show a global increase of SO2F2 mole fraction from 0.3 ± 0.02 to 2.5 ± 0.08 ppt along with a global increase in emissions from 0.5 ± 0.4 Gg yr−1 to 2.9 ± 0.4 Gg yr−1 from 1978 to 2019. Based on a hybrid model incorporating bottom-up industry data and a top-down downscaling approach, we estimate the spatial distribution and trend in SO2F2 regional emissions between 2000 and 2019 and propose that the global emissions increase is driven by the growing use of SO2F2 in structural fumigation in North America and in postharvest treatment of grains and other agricultural products worldwide.

2021

Publikasjon
År
Kategori