Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9888 publikasjoner. Viser side 337 av 396:

Publikasjon  
År  
Kategori

GUV long-term measurements of total ozone column and effective cloud transmittance at three Norwegian sites

Svendby, Tove Marit; Johnsen, Bjørn; Kylling, Arve; Dahlback, Arne; Bernhard, Germar H.; Hansen, Georg H.; Petkov, Boyan; Vitale, Vito

Measurements of total ozone column and effective cloud transmittance have been performed since 1995 at the three Norwegian sites Oslo/Kjeller, Andøya/Tromsø, and in Ny-Ålesund (Svalbard). These sites are a subset of nine stations included in the Norwegian UV monitoring network, which uses ground-based ultraviolet (GUV) multi-filter instruments and is operated by the Norwegian Radiation and Nuclear Safety Authority (DSA) and the Norwegian Institute for Air Research (NILU). The network includes unique data sets of high-time-resolution measurements that can be used for a broad range of atmospheric and biological exposure studies. Comparison of the 25-year records of GUV (global sky) total ozone measurements with Brewer direct sun (DS) measurements shows that the GUV instruments provide valuable supplements to the more standardized ground-based instruments. The GUV instruments can fill in missing data and extend the measuring season at sites with reduced staff and/or characterized by harsh environmental conditions, such as Ny-Ålesund. Also, a harmonized GUV can easily be moved to more remote/unmanned locations and provide independent total ozone column data sets. The GUV instrument in Ny-Ålesund captured well the exceptionally large Arctic ozone depletion in March/April 2020, whereas the GUV instrument in Oslo recorded a mini ozone hole in December 2019 with total ozone values below 200 DU. For all the three Norwegian stations there is a slight increase in total ozone from 1995 until today. Measurements of GUV effective cloud transmittance in Ny-Ålesund indicate that there has been a significant change in albedo during the past 25 years, most likely resulting from increased temperatures and Arctic ice melt in the area surrounding Svalbard.

2021

A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe

Bressi, Michaël; Cavalli, Fabrizia; Putaud, Jean-Philippe; Fröhlich, Roman; Petit, Jean Eudes; Aas, Wenche; Aijälä, Mikko; Alastuey, Andrés; Allan, James Donald; Aurela, Minna A.; Berico, Massimo; Bougiatioti, Aikaterini; Bukowiecki, Nicolas; Canonaco, Francesco; Crenn, Vincent; Dusanter, Sebastien; Ehn, Mikael; Elsasser, Michael; Flentje, Harald; Graf, Peter; Green, David C.; Heikkinen, Liine M.; Hermann, Hartmut; Holzinger, Rupert; Hueglin, Christoph; Keernik, Hannes; Kiendler-Scharr, Astrid; Kubelová, Lucie; Lunder, Chris Rene; Maasikmets, Marek; Makes, Otakar; Malaguti, Antonella; Mihalopoulos, N.; Nicolas, José B.; O'Dowd, Colin; Ovadnevaite, Jurgita; Petralia, Ettore; Poulain, Laurent; Priestman, Max; Riffault, Véronique; Ripoll, Anna; Schlag, Patrick H; Schwarz, Joshua P.; Sciare, Jean; Slowik, Jay G.; Sosedova, Yulia A.; Stavroulas, Iasonas; Teinemaa, Erik; Via, Marta; Vodicka, Petr; Williams, Paul I; Wiedensohler, Alfred; Young, Dominique E.; Zhang, Shouwen; Favez, Olivier; Minguillón, María Cruz; Prévôt, André Stephan Henry

Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62°N and 10° W – 26°E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid-latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/m³) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 μg/m³ at half of the sites.

Elsevier

2021

Impact of Eurasian autumn snow on the winter North Atlantic Oscillation in seasonal forecasts of the 20th century

Wegmann, Martin; Orsolini, Yvan J.; Weisheimer, Antje; Van Den Hurk, Bart; Lohmann, Gerrit

As the leading climate mode of wintertime climate variability over Europe, the North Atlantic Oscillation (NAO) has been extensively studied over the last decades. Recently, studies highlighted the state of the Eurasian cryosphere as a possible predictor for the wintertime NAO. However, missing correlation between snow cover and wintertime NAO in climate model experiments and strong non-stationarity of this link in reanalysis data are questioning the causality of this relationship.

Here we use the large ensemble of Atmospheric Seasonal Forecasts of the 20th Century (ASF-20C) with the European Centre for Medium-Range Weather Forecasts model, focusing on the winter season. Besides the main 110-year ensemble of 51 members, we investigate a second, perturbed ensemble of 21 members where initial (November) land conditions over the Northern Hemisphere are swapped from neighboring years. The Eurasian snow–NAO linkage is examined in terms of a longitudinal snow depth dipole across Eurasia. Subsampling the perturbed forecast ensemble and contrasting members with high and low initial snow dipole conditions, we found that their composite difference indicates more negative NAO states in the following winter (DJF) after positive west-to-east snow depth gradients at the beginning of November. Surface and atmospheric forecast anomalies through the troposphere and stratosphere associated with the anomalous positive snow dipole consist of colder early winter surface temperatures over eastern Eurasia, an enhanced Ural ridge and increased vertical energy fluxes into the stratosphere, with a subsequent negative NAO-like signature in the troposphere. We thus confirm the existence of a causal connection between autumn snow patterns and subsequent winter circulation in the ASF-20C forecasting system.

2021

Time trends of perfluoroalkyl substances in blood in 30-year old Norwegian men and women in the period 1986–2007

Berg, Vivian; Sandanger, Torkjel M; Hanssen, Linda; Rylander, Charlotta; Nøst, Therese Haugdahl

Biomonitoring studies are helpful tools and can increase our knowledge on time trends in human blood concentrations of PFASs: how they relate to emission trends and the potential prenatal exposure for future generations. In this study, serum was sampled in cross-sections of men and women who were 30 years old in each of the years 1986, 1994, 2001, and 2007 in Northern Norway and analyzed for 23 PFASs. Differences in serum concentrations across sampling years were investigated graphically and with significance testing and compared with those observed in our previous longitudinal study using repeated individual measurements in older men in the same years. The results demonstrate overall increasing blood burdens of PFASs in men and women in reproductively active ages during 1986–2001 and decreases until 2007. However, longer chained PFASs were still increasing in 2007 indicating divergent time trends between the different PFASs, underlining the importance of continued biomonitoring. Comparisons between 30-year-old men and older men within the same population demonstrated variation in time trends in the exact same years, underlining that biomonitoring studies must regard historic exposures and birth cohort effects.

Springer

2021

Aircraft mass balance estimate of methane emissions from offshore gas facilities in the Southern North Sea

Pühl, Magdalena; Roiger, Anke; Fiehn, Alina; Schwietzke, Stefan; Allen, Grant; Foulds, Amy; Lee, James; France, James L.; Lachlan-Cope, Tom; Warwick, Nicola J.; Pisso, Ignacio

2021

The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018

Petrescu, Ana Maria Roxana; McGrath, Matthew J; Andrew, Robbie; Peylin, Philippe; Peters, Glen Philip; Ciais, Philippe; Broquet, Grégoire; Tubiello, Francesco N.; Gerbig, Christoph; Pongratz, Julia; Janssens-Maenhout, Greet; Grassi, Giacomo; Nabuurs, Gert-Jan; Regnier, Pierre; Lauerwald, Ronny; Kuhnert, Matthias; Balkovic, Juraj; Schelhaas, Mart-Jan; van der Gon, Hugo A.C. Denier; Solazzo, Efisio; Qiu, Chunjing; Pilli, Roberto; Konovalov, Igor B.; Houghton, Richard A.; Günther, Dirk; Perugini, Lucia; Crippa, Monica; Ganzenmüller, Raphael; Luijkx, Ingrid T.; Smith, Pete; Munassar, Saqr; Thompson, Rona Louise; Conchedda, Giulia; Monteil, Guillaume; Scholze, Marko; Karstens, Ute; Brockmann, Patrick; Dolman, Albertus Johannes

Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27 + UK), derived from a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which need to be answered to properly understand the differences between various datasets, in particular with regards to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates over the period 1990–2018. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates produced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arises from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is that related to different system boundaries and emission categories (CO2 fossil) and the use of different land use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2 land). At the EU27 + UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and report a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line with the national inventories. Over 2011–2015, the CO2 land sources and sinks from NGHGI estimates report −90 Tg C yr−1 ±  30 Tg C yr−1 while all other BU approaches report a mean sink of −98 Tg C yr−1 (± 362 Tg of C from dynamic global vegetation models only). For the TD model ensemble results, we observe a much larger spread for regional inversions (i.e., mean of 253 Tg C yr−1 ± 400 Tg C yr−1). This concludes that (a) current independent approaches are consistent with NGHGIs and (b) their uncertainty is too large to allow a verification because of model differences and probably also because of the definition of “CO2 flux” obtained from different approaches. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4626578 (Petrescu et al., 2020a).

2021

Vurdering av utslipp til luft fra Wistingfeltet i Barentshavet. Underlag for konsekvensutredning.

Berglen, Tore Flatlandsmo; Tønnesen, Dag

NILU har vurdert miljøkonsekvensene av utslipp til luft fra fremtidig utbygging og drift av Wisting-feltet i Barentshavet. Utslipp av CO2, CH4, N2O og NMVOC er vurdert utfra bidrag til strålingspådriv/global oppvarming. Kraftforsyning fra land med sjøkabel vil sterkt redusere utslippene av CO2. Klimaeffekten av utslipp til luft fra produksjonen vil bli liten. Bidraget fra Wisting til eutrofiering og forsuring gjennom avsetning av NOx og SOx forventes å være lite og knapt målbart. Likeledes vil bidraget fra Wisting til ozonproduksjon være minimalt og knapt målbart. Klimaeffekten av BC-utslipp (Black Carbon) fra installasjonene på Wisting vil bli liten. Samtidig gir utslipp av BC i Arktis større effekt pr. utslippsenhet enn utslipp lenger sør. Det bør derfor være et mål å optimalisere faklingen fra Wisting slik at utslipp av BC blir redusert til et absolutt minimum.

NILU

2021

Hormonforstyrrende aktivitet av semiflyktige organiske kjemikalier i inneluft

Halse, Anne Karine; Bohlin-Nizzetto, Pernilla; Mariussen, Espen; Warner, Nicholas Alexander; Borgen, Anders

2021

Ren luft for alle. ExtraStiftelsen project 2019/HE1-263918.

Castell, Nuria; Grossberndt, Sonja; Gray, Laura; Fredriksen, Mirjam; Høiskar, Britt Ann Kåstad

In 2019, in the framework of Oslo being European Green Capital, NILU invited students from elementary schools to
measure air pollution in their neighbourhood, using simple and affordable measuring methods based on paper and
Vaseline. The students prepared the measuring devices and selected the places where they wanted to monitor. After one
week, they retrieved the devices and used a scale to compare the amount of dust fastened to the Vaseline. All of the data
gathered by the students was uploaded by the teachers to a website (https://luftaforalle.nilu.no/), where a map showed all the results from the participating schools. The school campaign has helped researchers to get data on particulate matter from many places where data was not available, and has increased awareness among the children about the sustainability challenges cities are facing.

NILU

2021

Quality assurance and quality control procedure for national and Union GHG projections 2021

Schmid, Carmen; Wartecker, Georg; Dauwe, Tom; van Maris, Kelsey; Brook, Rosie; Bouman, Evert; Joswicka-Olsen, Magdalena; Esparrago, Javier

The quality assurance and quality control (QA/QC) procedure is an element of the QA/QC programme of the Union system for policies and measures and projections to be established in 2021 according to Article 39 of the Regulation on the Governance of the Energy Union and Climate Action (EU) 2018/1999. The European Environment Agency (EEA) is responsible for the annual implementation of the QA/QC procedures and is assisted by the European Topic Centre on Climate Change Mitigation and Energy (ETC/CME). The QA/QC procedure document describes QA/QC checks carried out at EU level on the national reported projections from Member States and on the compiled Union GHG projections. QA/QC procedures are performed at several different stages during the preparation of the national and Union GHG projections in order to aim to ensure the timeliness, transparency, accuracy, consistency, comparability and completeness of the reported information. The results of the 2021 QA/QC procedure are presented in the related paper ETC/CME Eionet Report 8/2021.

ETC/CME

2021

Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands of Svalbard

Song, Congbo; Dall'Osto, Manuel; Lupi, Angelo; Mazzola, Mauro; Traversi, Rita; Becagli, Silvia; Gilardoni, Stefania; Vratolis, Stergios; Yttri, Karl Espen; Beddows, David C.S.; Schmale, Julia; Brean, James; Kramawijaya, Agung Ghani; Harrison, Roy M.; Shi, Zongbo

Understanding aerosol–cloud–climate interactions in the Arctic is key to predicting the climate in this rapidly changing region. Whilst many studies have focused on submicrometer aerosol (diameter less than 1 µm), relatively little is known about the supermicrometer aerosol (diameter above 1 µm). Here, we present a cluster analysis of multiyear (2015–2019) aerodynamic volume size distributions, with diameter ranging from 0.5 to 20 µm, measured continuously at the Gruvebadet Observatory in the Svalbard archipelago. Together with aerosol chemical composition data from several online and offline measurements, we apportioned the occurrence of the coarse-mode aerosols during the study period (mainly from March to October) to anthropogenic (two sources, 27 %) and natural (three sources, 73 %) origins. Specifically, two clusters are related to Arctic haze with high levels of black carbon, sulfate and accumulation mode (0.1–1 µm) aerosol. The first cluster (9 %) is attributed to ammonium sulfate-rich Arctic haze particles, whereas the second one (18 %) is attributed to larger-mode aerosol mixed with sea salt. The three natural aerosol clusters were open-ocean sea spray aerosol (34 %), mineral dust (7 %) and an unidentified source of sea spray-related aerosol (32 %). The results suggest that sea-spray-related aerosol in polar regions may be more complex than previously thought due to short- and long-distance origins and mixtures with Arctic haze, biogenic and likely blowing snow aerosols. Studying supermicrometer natural aerosol in the Arctic is imperative for understanding the impacts of changing natural processes on Arctic aerosol.

2021

DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population

Niazi, Yasmeen; Thomsen, Hauke; Smolkova, Bozena; Vodickova, Ludmila; Vodenkova, Sona; Kroupa, Michal; Vymetalkova, Veronika; Kazimirova, Alena; Barancokova, Magdalena; Volkovova, Katarina; Staruchova, Marta; Hoffmann, Per; Nöthen, Markus M; Dusinska, Maria; Musak, Ludovit; Vodicka, Pavel; Försti, Asta; Hemminki, Kari

Elsevier

2021

Risk assessment of caffeine exposure from diet and personal care products. Opinion of the Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food, and Cosmetics of the Norwegian Scientific Committee for Food and Environment

Carlsen, Monica Hauger; Devold, Tove Gulbrandsen; Granum, Berit Brunstad; Lillegaard, Inger Therese Laugsand; Mathisen, Gro Haarklou; Rasinger, Josef; Rohloff, Jens; Starrfelt, Jostein; Svendsen, Camilla; Bruzell, Ellen Merete; Husøy, Trine; Rundén-Pran, Elise

2021

Røyk fra skogbrannene i USA kan sees over Norge

Fiebig, Markus (intervjuobjekt); Ulvin, Philippe Bedos (journalist)

2021

– Ta på ullsokker og fyr litt mindre!

Grythe, Henrik (intervjuobjekt); Pedersen, Lars Håkon (journalist)

2021

Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components

Fagerli, Hilde; Tsyro, Svetlana; Simpson, David; Nyiri, Agnes; Wind, Peter; Gauss, Michael; Benedictow, Anna Maria Katarina; Klein, Heiko; Valdebenito Bustamante, Alvaro Moises; Mu, Qing; Wærsted, Eivind Grøtting; Gliss, Jonas; Brenna, Hans; Mortier, Augustin; Griesfeller, Jan; Aas, Wenche; Hjellbrekke, Anne-Gunn; Solberg, Sverre; Tørseth, Kjetil; Yttri, Karl Espen; Mareckova, Katarina; Matthews, Bradley; Schindlbacher, Sabine; Ullrich, Bernhard; Wankmüller, Robert; Scheuschner, Thomas; Kuenen, Jeroen J.P.

Norwegian Meteorological Institute

2021

Why is the city's responsibility for its air pollution often underestimated? A focus on PM2.5

Thunis, Philippe; Clappier, Alain; de Meij, Alexander; Pisoni, Enrico; Bessagnet, Bertrand; Tarrasón, Leonor

While the burden caused by air pollution in urban areas is well documented, the origin of this pollution and therefore the responsibility of the urban areas in generating this pollution are still a subject of scientific discussion. Source apportionment represents a useful technique to quantify the city's responsibility, but the approaches and applications are not harmonized and therefore not comparable, resulting in confusing and sometimes contradicting interpretations. In this work, we analyse how different source apportionment approaches apply to the urban scale and how their building elements and parameters are defined and set. We discuss in particular the options available in terms of indicator, receptor, source, and methodology. We show that different choices for these options lead to very large differences in terms of outcome. For the 150 large EU cities selected in our study, different choices made for the indicator, the receptor, and the source each lead to an average difference of a factor of 2 in terms of city contribution. We also show that temporal- and spatial-averaging processes applied to the air quality indicator, especially when diverging source apportionments are aggregated into a single number, lead to the favouring of strategies that target background sources while occulting actions that would be efficient in the city centre. We stress that methodological choices and assumptions most often lead to a systematic and important underestimation of the city's responsibility, with important implications. Indeed, if cities are seen as a minor actor, plans will target the background as a priority at the expense of potentially effective local actions.

2021

Brominated Flame Retardants in Antarctic Air in the Vicinity of Two All-Year Research Stations

Nash, Susan M. Bengtson; Wild, Seanan; Broomhall, Sara; Bohlin-Nizzetto, Pernilla

Continuous atmospheric sampling was conducted between 2010–2015 at Casey station in Wilkes Land, Antarctica, and throughout 2013 at Troll Station in Dronning Maud Land, Antarctica. Sample extracts were analyzed for polybrominated diphenyl ethers (PBDEs), and the naturally converted brominated compound, 2,4,6-Tribromoanisole, to explore regional profiles. This represents the first report of seasonal resolution of PBDEs in the Antarctic atmosphere, and we describe conspicuous differences in the ambient atmospheric concentrations of brominated compounds observed between the two stations. Notably, levels of BDE-47 detected at Troll station were higher than those previously detected in the Antarctic or Southern Ocean region, with a maximum concentration of 7800 fg/m3. Elevated levels of penta-formulation PBDE congeners at Troll coincided with local building activities and subsided in the months following completion of activities. The latter provides important information for managers of National Antarctic Programs for preventing the release of persistent, bioaccumulative, and toxic substances in Antarctica.

MDPI

2021

Information Requirements under the Essential-Use Concept: PFAS Case Studies

Glüge, Juliane; London, Rachel; Cousins, Ian T.; Dewitt, Jamie; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Miller, Mark; Ng, Carla A.; Patton, Sharyle; Trier, Xenia; Wang, Zhanyun; Scheringer, Martin

Per- and polyfluoroalkyl substances (PFAS) are a class of substances for which there are widespread concerns about their extreme persistence in combination with toxic effects. It has been argued that PFAS should only be employed in those uses that are necessary for health or safety or are critical for the functioning of society and where no alternatives are available (“essential-use concept”). Implementing the essential-use concept requires a sufficient understanding of the current uses of PFAS and of the availability, suitability, and hazardous properties of alternatives. To illustrate the information requirements under the essential-use concept, we investigate seven different PFAS uses, three in consumer products and four industrial applications. We investigate how much information is available on the types and functions of PFAS in these uses, how much information is available on alternatives, their performance and hazardous properties and, finally, whether this information is sufficient as a basis for deciding on the essentiality of a PFAS use. The results show (i) the uses of PFAS are highly diverse and information on alternatives is often limited or lacking; (ii) PFAS in consumer products often are relatively easy to replace; (iii) PFAS uses in industrial processes can be highly complex and a thorough evaluation of the technical function of each PFAS and of the suitability of alternatives is needed; (iv) more coordination among PFAS manufacturers, manufacturers of alternatives to PFAS, users of these materials, government authorities, and other stakeholders is needed to make the process of phasing out PFAS more transparent and coherent.

2021

Validation of Smiles HCl Profiles Over a Wide Range from the Stratosphere to the Lower Thermosphere

Nara, Seidai; Sato, Tomohiro O.; Yamada, Takayoshi; Froidevaux, Lucien; Livesey, Nathaniel J.; Walker, Kaley A.; Schreier, Franz; Xu, Jian; Orsolini, Yvan J.; Limpasuvan, Varavut; Kuno, Nario; Kasai, Yasuko

2021

Increased soil N2O emissions from the Arctic-Boreal region: A non-negligible non-carbon climate feedback

Pan, Naiqing; Tian, Hanqin; Pan, Shufen; Shi, Hao; Canadell, Josep G; Chang, Jinfeng; Ciais, Philippe; Davidson, Eric A.; Hugelius, Gustaf; Ito, Akihiko; Jackson, Robert B.; Joos, Fortunat; Millet, Dylan B.; Olin, Stefan; Patra, Prabir K.; Thompson, Rona Louise; Wells, Kelley C.; Wilson, Chris J.; Zaehle, Sönke

2021

Interim European air quality maps for 2020. PM10, NO2 and ozone spatial estimates based on non-validated UTD data.

Horálek, Jan; Schreiberova, Marketa; Vlasakova, Leona; Hamer, Paul David; Schneider, Philipp; Markova, Jana

The report provides interim 2020 maps for PM10 annual average, NO2 annual average and the ozone indicator SOMO35. The maps have been produced based on non-validated Up-To-Date data reported to the AQ e-reporting database (data flow E2a), the CAMS Ensemble Forecast modelling data and other supplementary data including air quality data reported to EMEP. In addition to concentration maps, the inter-annual differences between the years 2019 and 2020 are presented (using the 2019 regular and the 2020 interim maps), as well as European exposure estimates based on the interim maps. The contribution of lockdown measures connected with the Covid-19 pandemic on the change of air pollutant concentrations during the exceptional year 2020 is briefly discussed. The decrease in road transport, aviation and international shipping intensity during the lockdown resulted in a reduction of the NOx emission, mainly in large cities and urbanized areas. Compared to 2019, a general decrease in NO2 annual average concentrations is shown for 2020, as well as a decrease in values of the ozone indicator SOMO35, apart from areas with a steep NO2 decrease. Due to the chemical processes, the decrease in NOX resulted in an ozone increase in these areas. The contribution of lockdown measures on the change of PM10 concentrations is quite complex. On the one hand, there was a decrease in emissions of suspended particles and their precursors due to decrease in transport. On the other hand, higher intensity of residential heating likely led to higher emissions of both suspended particles and their precursors.

ETC/ATNI

2021

Publikasjon
År
Kategori