Fant 9888 publikasjoner. Viser side 34 av 396:
2022
2006
2011
2011
2011
2013
TK-4103C/D Mongstad. Spredningsberegninger. NILU OR
NILU - Norsk institutt for luftforskning har på oppdrag fra Statoil Petroleum gjort spredningsberegninger av utslipp av SO2 til luft fra skorstein TK-4103C/D på Mongstad.
Beregningene gjøres som forarbeid i forbindelse med planlagte arbeider og oppgraderinger ved raffineriet (modifikasjon M1: 42647634 ¿ avgassutfordringer fra SRU RS14). Resultatene sammenlignes med gjeldende akseptkriterier, deriblant ACGIH TLV-STEL (American Conference of Governmental Industrial Hygiene som har korttids grenseverdi lik 0,65 mg/m3). Konklusjonen er at de fleste beregningspunktene viser høyere maksimumskonsentrasjon enn ACGIH-standarden. Forslag til avbøtende tiltak og mulige forholdsregler er gitt.
2013
2019
Titanium dioxide nanoparticles (TiO2 NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO2 NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO2 NPs (0.00167 and 0.1308 mg TiO2/m3) in mice. A dose-dependent effect of TiO2 NPs on innate immunity was evident in the form of stimulated phagocytic activity of monocytes in low-dose mice and suppressed secretory function of monocytes (IL-18) in high-dose animals. The effect of TiO2 NPs on adaptive immunity, manifested in the spleen by a decrease in the percentage of T-cells, a reduction in T-helper cells, and a dose-dependent decrease in lymphocyte cytokine production, may indicate immunosuppression in exposed mice. The dose-dependent increase in GSH concentration and GSH/GSSG ratio in whole blood demonstrated stimulated antioxidant defense against oxidative stress induced by TiO2 NP exposure.
MDPI
2023
2023
2024
2012
2011
2019
The long-term time trends of atmospheric pollutants at eight Arctic monitoring stations are reported. The work was conducted under the Arctic Monitoring and Assessment Programme (AMAP) of the Arctic Council. The monitoring stations were: Alert, Canada; Zeppelin, Svalbard; Stórhöfði, Iceland; Pallas, Finland; Andøya, Norway; Villum Research Station, Greenland; Tiksi and Amderma, Russia. Persistent organic pollutants (POPs) such as α- and γ-hexachlorocyclohexane (HCH), polychlorinated biphenyls (PCBs), α-endosulfan, chlordane, dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl ethers (PBDEs) showed declining trends in air at all stations. However, hexachlorobenzene (HCB), one of the initial twelve POPs listed in the Stockholm Convention in 2004, showed either increasing or non-changing trends at the stations. Many POPs demonstrated seasonality but the patterns were not consistent among the chemicals and stations. Some chemicals showed winter minimum and summer maximum concentrations at one station but not another, and vice versa. The ratios of chlordane isomers and DDT species showed that they were aged residues. Time trends of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were showing decreasing concentrations at Alert, Zeppelin and Andøya. The Chemicals of Emerging Arctic Concern (CEAC) were either showing stable or increasing trends. These include methoxychlor, perfluorohexane sulfonic acid (PFHxS), 6:2 fluorotelomer alcohol, and C9-C11 perfluorocarboxylic acids (PFCAs). We have demonstrated the importance of monitoring CEAC before they are being regulated because model calculations to predict their transport mechanisms and fate cannot be made due to the lack of emission inventories. We should maintain long-term monitoring programmes with consistent data quality in order to evaluate the effectiveness of chemical control efforts taken by countries worldwide.
Elsevier
2021
2021
Biomonitoring studies are helpful tools and can increase our knowledge on time trends in human blood concentrations of PFASs: how they relate to emission trends and the potential prenatal exposure for future generations. In this study, serum was sampled in cross-sections of men and women who were 30 years old in each of the years 1986, 1994, 2001, and 2007 in Northern Norway and analyzed for 23 PFASs. Differences in serum concentrations across sampling years were investigated graphically and with significance testing and compared with those observed in our previous longitudinal study using repeated individual measurements in older men in the same years. The results demonstrate overall increasing blood burdens of PFASs in men and women in reproductively active ages during 1986–2001 and decreases until 2007. However, longer chained PFASs were still increasing in 2007 indicating divergent time trends between the different PFASs, underlining the importance of continued biomonitoring. Comparisons between 30-year-old men and older men within the same population demonstrated variation in time trends in the exact same years, underlining that biomonitoring studies must regard historic exposures and birth cohort effects.
Springer
2021
2013
2016
Time series analysis of Arctic tropospheric ozone as short-lived climate force. Nordiske Arbejdspapirer, 2015:918
2015
2004