Fant 10004 publikasjoner. Viser side 350 av 401:
2021
2006
2008
1999
To cope with the high number of nanomaterials manufactured, it is essential to develop high-throughput methods for in vitro toxicity screening. At the same time, the issue with interference of the nanomaterial (NM) with the read-out or the reagent of the assay needs to be addressed to avoid biased results. Thus, validated label-free methods are urgently needed for hazard identification of NMs to avoid unintended adverse effects on human health. The colony forming efficiency (CFE) assay is a label- and interference-free method for quantification of cytotoxicity by cell survival and colony forming efficiency by CFE formation. The CFE has shown to be compatible with toxicity testing of NMs. Here we present an optimized protocol for a higher-throughput set up.
2022
2010
2011
2011
The comet assay applied to HepG2 liver spheroids
							In accordance with the 3 Rs to reduce in vivo testing, more advanced in vitro models, moving from 2D monolayer to 3D cultures, should be developed for prediction of human toxicity of industrial chemicals and environmental pollutants. In this study we compared cytotoxic and genotoxic responses induced by chemicals in 2D and 3D spheroidal cultures of the human liver cancer cell line HepG2.
HepG2 spheroids were prepared by hanging drop technology. Both 3D spheroids and 2D monolayer cultures were exposed to different chemicals (colchicine, chlorpromazine hydrochloride or methyl methanesulfonate) for geno- and cytotoxicity studies. Cytotoxicity was investigated by alamarBlue assay, flow cytometry and confocal imaging. DNA damage was investigated by the comet assay with and without Fpg enzyme for detection of DNA strand breaks and oxidized or alkylated base lesions.
The results from the cyto- and genotoxicity tests showed differences in sensitivity comparing the 2D and 3D HepG2 models. This study shows that human 3D spheroidal hepatocellular cultures can be successfully applied for genotoxicity testing by the comet assay and represent a promising advanced in vitro model for toxicity testing.
						
2019
2014
2019
2019
2008
2019
2009
The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies
Atmospheric inversion approaches are expected to play a critical role in future observation-based monitoring systems for surface fluxes of greenhouse gases (GHGs), pollutants and other trace gases. In the past decade, the research community has developed various inversion software, mainly using variational or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior information and with various atmospheric chemistry–transport models. Each of them can assimilate some or all of the available observation streams for its domain area of interest: flask samples, in situ measurements or satellite observations. Although referenced in peer-reviewed publications and usually accessible across the research community, most systems are not at the level of transparency, flexibility and accessibility needed to provide the scientific community and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore, their development, usually carried out by individual research institutes, may in the future not keep pace with the increasing scientific needs and technical possibilities. We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent and open-source Python-based tool to estimate the fluxes of various GHGs and reactive species both at the global and regional scales. It will allow for running different atmospheric transport models, different observation streams and different data assimilation approaches. This adaptability will allow for a comprehensive assessment of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the system, and we demonstrate how it operates in a simple academic case.
2021
2022
Traveling planetary waves surrounding sudden stratospheric warming events can result from direct propagation from below or in situ generation. They can have significant impacts on the circulation in the mesosphere and lower thermosphere. Our study runs a series of ensembles initialized from the Whole Atmosphere Community Climate Model, Version 4, nudged up to 50 km by six-hourly Modern-Era Retrospective Analysis for Research and Application, Version 2, reanalysis to compile a library of sudden stratospheric warming events. To our knowledge, we present the first composite or ensemble study that attempts to link direct propagation and in situ generation by evaluating the wave geometries associated with the overreflection perspective, a framework used to describe how planetary waves interact with critical and turning levels. The present study looks at the evolution of these interactions through the onset of sudden stratospheric warmings with an elevated stratopause or ES-SSWs. Robust and unique features of ES-SSWs are determined by employing an ensemble study that compares ES-SSWs with normal winters. Our study evaluates the production and impacts of westward-propagating, quasi-stationary, and eastward-propagating planetary waves surrounding ES-SSWs. Our results show that eastward-propagating planetary waves are generated within the westward stratospheric wind layer after ES-SSW onset which aids in restoring the eastward stratospheric wind. The interaction of quasi-stationary and westward-propagating waves with the westward stratospheric wind is explored from an overreflection perspective and reaffirms that westward-propagating planetary waves are produced from instabilities at the top of the westward stratospheric wind reversal.
2023
2017