Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9721 publikasjoner. Viser side 368 av 389:

Publikasjon  
År  
Kategori

Triclosan - utslipp og forekomst av triclosan i det norske miljøet. NILU F

Schlabach, M.; Fjeld, E.; Kjellberg, G.; Ruus, A.; Vogelsang, C.

2005

Troll observing network – for useful new data about Antarctica

Pedersen, Christina Alsvik; Njåstad, Birgit; Descamps, Sebastien; Hattermann, Tore; Hudson, Stephen; Flått, Stig; Aas, Wenche; Darelius, Elin Maria K.; Miloch, Wojciech Jacek; Schweitzer, Johannes; Storvold, Rune

2023

Troll observing network – for useful new data about Antarctica

Pedersen, Christina Alsvik; Njåstad, Birgit; Descamps, Sebastien; Hattermann, Tore; Hudson, Stephen; Flått, Stig; Tronstad, Stein; Aas, Wenche; Darelius, Elin Maria K.; Miloch, Wojciech Jacek; Schweitzer, Johannes; Storvold, Rune

What do Antarctic petrels in Svarthamaren, soil structure movements at Troll research station and ocean chemistry in the Håkon VII Sea have in common? They will all be studied at the Troll observing network currently being established at Troll research station in Dronning Maud Land in Antarctica.

2023

Troll Station - A new year-round atmospheric monitoring and research station in Antarctica.

Hansen, G.H.; Lunder, C.R.; Schmidbauer, N.; Stebel, K.; Aas, W.; Kallenborn, R.; Holmén, K.; Tørseth, K.; Berg, T.

2007

Tromsø som nasjonalhavn. Breivika havneavsnitt. Konsekvensutredning, delrapport vedrørende utslipp til luft. NILU OR

Knudsen, S.; Haugsbakk, I.

Tromsø havnevesen har bedt NILU om å utrede virkningene av utslipp til luft som følge av utbygging av havnen til nasjonal havn i Tromsø.

2002

Trophic and fitness correlates of Hg and POP exposure in incubating female Antarctic petrels

Carravieri, Alice; Warner, Nicholas Alexander; Tarroux, Arnaud; Descamps, Sebastien; Bustamante, P.

2019

Trophic and fitness correlates of mercury and organochlorine compound residues in egg-laying Antarctic petrels

Carravieri, Alice; Warner, Nicholas Alexander; Herzke, Dorte; Brault-Favrou, Maud; Tarroux, Arnaud; Fort, Jérôme; Bustamante, Paco; Descamps, Sebastien

Elsevier

2020

Tropospheric aerosols and clouds.

Noone, K.; Baltensperger, U.; Flossmann, A.; Fuzzi, S.; Hass, H.; Nemitz, E.; Putaud, J.-P.; Puxbaum, H.; Schurath, U.; Tørseth, K.; ten Brink, H.

2002

Tropospheric CO vertical profiles deduced from total columns using data assimilation: methodology and validation.

El Amraoui, L.; Attié, J.-L.; Ricaud, P.; Lahoz, W. A.; Piacentini, A.; Peuch, V.-H.; Warner, J. X.; Abida, R.; Barré, J.; Zbinden, R.

2014

Tropospheric ozone and aerosols in climate agreements: scientific and political challenges.

Rypdal, K.; Berntsen, T.; Fuglestvedt, J.; Aunan, K.; Torvanger, A.; Stordal, F.; Pacyna, J.M.; Nygaard, L.P.

2005

Tropospheric ozone and its control

Volz-Thomas, A.; Beekmann, M.; Derwent, D.; Law, K.; Lindskog, A.; Prévôt, A.; Roemer, M.; Schultz, M.; Schurath, U.; Solberg, S.; Stohl, A.

2002

Tropospheric ozone assessment report: database and metrics data of global surface ozone observations.

Schultz, M. G.; Schröder, S.; Lyapina, O.; Cooper, O.; Galbally, I.; Petropavlovskikh, I.; von Schneidemesser, E.; Tanimoto, H.; Elshorbany, Y.; Naja, M.; Seguel, R. J.; Dauert, U.; Eckhardt, P.; Feigenspahn, S.; Fiebig, M.; Hjellbrekke, A.-G.; Hong, Y.-D.; Kjeld, P. C.; Koide, H. Lear, G.; Tarasick, D.; Ueno, M.; Wallasch, M.; Baumgardner, D.; Chuang, M.-T.; Gillett, R.; Lee, M.; Molloy, S.; Moolla, R.; Wang, T.; Sharps, K.; Adame, J. A.; Ancellet, G.; Apadula, F.; Artaxo, P.; Barlasina, M.; Bogucka, M.; Bonasoni, P.; Chang, L.; Colomb, A.; Cuevas-Agulló, E.; Cupeiro, M.; Degorska, A.; Ding, A.; Fröhlich, M.; Frolova, M.; Gadhavi, H.; Gheusi, F.; Gilge, S.; Gonzalez, M. Y.; Gros, V.; Hamad, S. H.; Helmig, D.; Henriques, D.; Hermansen, O.; Holla, R.; Hueber, J.; Im, U.; Jaffe, D. A.; Komala, N.; Kubistin, D.; Lam, K.-S.; Laurila, T.; Lee, H.; Levy, I.; Mazzoleni, C.; Mazzoleni, L.; McClure-Begley, A.; Mohamad, M.; Murovic, M.; Navarro-Comas, M.; Nicodim, F.; Parrish, D.; Read, K. A.; Reid, N.; Ries, L.; Saxena, P.; Schwab, J. J.; Scorgie, Y.; Senik, I.; Simmonds, P.; Sinha, V.; Skorokhod, A. I.; Spain, G.; Spangl, W.; Spoor, R.; Springston, S. R.; Steer, K.; Steinbacher, M.; Suharguniyawan, E.; Torre, P.; Trickl, T.; Weili, L.; Weller, R.; Xiaobin, X.; Xue, L.; Zhiqiang, M.

2017

Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research

Lefohn, Allen S.; Malley, Christopher S.; Smith, Luther; Wells, Benjamin; Hazucha, Milan; Simon, Heather; Naik, Vaishali; Mills, Gina; Schultz, Martin G.; Paoletti, Elena; De Marco, Alessandra; Xu, Xiaobin; Zhang, Li; Wang, Tao; Neufeld, Howard S.; Musselman, Robert C.; Tarasick, David; Brauer, Michael; Feng, Zhaozhong; Tang, Haoye; Kobayashi, Kazuhiko; Sicard, Pierre; Solberg, Sverre; Gerosa, Giacomo

Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics.

2018

Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health

Fleming, Zoë L.; Doherty, Ruth M.; von Schneidemesser, Erika; Malley, Christopher S.; Cooper, Owen R.; Pinto, Joseph P.; Colette, Augustin; Xu, Xiaobin; Simpson, David; Schultz, Martin G.; Lefohn, Allen S.; Hamad, Samera; Moolla, Raeesa; Solberg, Sverre; Feng, Zhaozhong

This study quantifies the present-day global and regional distributions (2010–2014) and trends (2000–2014) for five ozone metrics relevant for short-term and long-term human exposure. These metrics, calculated by the Tropospheric Ozone Assessment Report, are: 4th highest daily maximum 8-hour ozone (4MDA8); number of days with MDA8 > 70 ppb (NDGT70), SOMO35 (annual Sum of Ozone Means Over 35 ppb) and two seasonally averaged metrics (3MMDA1; AVGMDA8). These metrics were explored at ozone monitoring sites worldwide, which were classified as urban or non-urban based on population and nighttime lights data.

Present-day distributions of 4MDA8 and NDGT70, determined predominantly by peak values, are similar with highest levels in western North America, southern Europe and East Asia. For the other three metrics, distributions are similar with North–South gradients more prominent across Europe and Japan. Between 2000 and 2014, significant negative trends in 4MDA8 and NDGT70 occur at most US and some European sites. In contrast, significant positive trends are found at many sites in South Korea and Hong Kong, with mixed trends across Japan. The other three metrics have similar, negative trends for many non-urban North American and some European and Japanese sites, and positive trends across much of East Asia. Globally, metrics at many sites exhibit non-significant trends. At 59% of all sites there is a common direction and significance in the trend across all five metrics, whilst 4MDA8 and NDGT70 have a common trend at ~80% of all sites. Sensitivity analysis shows AVGMDA8 trends differ with averaging period (warm season or annual). Trends are unchanged at many sites when a 1995–2014 period is used; although fewer sites exhibit non-significant trends. Over the longer period 1970–2014, most Japanese sites exhibit positive 4MDA8/SOMO35 trends. Insufficient data exist to characterize ozone trends for the rest of Asia and other world regions.

2018

Tropospheric ozone over Siberia in spring 2010: remote influences and stratospheric intrusion.

Berchet, A.; Paris, J.-D.; Ancellet, G.; Law, K.; Stohl, A.; Nédélec, P.; Yu Arshinov, M.; Belan, B.D.; Ciais, P.

2013

Tropospheric ozone research. Overview of subproject TOR-2.

Lindskog, A.; Beekmann, M.; Monks, P.; Roemer, M.; Schuepbach, E.; Solberg, S.

2002

Trur ikkje på at forureininga i Flåm gjekk opp då cruiseskipa forsvann

Tørnkvist, Kjersti Karlsen (intervjuobjekt); Svarstad, Solveig; Dalaker, Sondre; Nyhus, Håvard (journalister)

2020

Tsetlin Machine Embedding: Representing Words Using Logical Expressions

Bhattarai, Bimal; Granmo, Ole-Christoffer; Jiao, Lei; Yadav, Rohan Kumar; Sharma, Jivitesh

2024

Publikasjon
År
Kategori