Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9896 publikasjoner. Viser side 378 av 396:

Publikasjon  
År  
Kategori

Air Pollution Monitoring for Health Research and Patient Care. An Official American Thoracic Society Workshop Report

Cromar, Kevin R.; Duncan, Bryan N.; Bartonova, Alena; Benedict, Kristen; Brauer, Michael; Habre, Rima; Hagler, Gayle S. W.; Haynes, John A.; Khan, Sean; Kilaru, Vasu; Liu, Yang; Pawson, Steven; Peden, David B.; Quint, Jennifer K.; Rice, Mary B.; Sasser, Erika N.; Seto, Edmund; Stone, Susan L.; Thurston, George D.; Volckens, John

2019

Air pollution modelling in Zaragoza. NILU OR

Gram, F.; Chamorro, J.M.

Denne rapporten finnes bare på engelsk.

2000

Air pollution in urban areas.

Høiskar, B. A. K.

2017

Air pollution in the border areas of Norway and Russia. Summary report 1990-1991. NILU OR

Sivertsen, B.; Makarova, T.; Hagen, L O.; Baklanov, A A.

1992

Air pollution in Northern Africa. NILU F

Sivertsen, B.

2009

Air pollution in Europe 1990-2004. EEA report, 2/2007

Adams, M.; Barrett, K.; van het Bolscher, Larssen, S.; de Leeuw, F.; Pulles, T.; van Loon, M.; van Pul, A.; Swart, R.

2007

Air pollution in Egypt. NILU F

Sivertsen, B.; El Seoud, A.A.; Fathy, H.; Ahmed, H.

2001

Air pollution exposure monitoring and estimation. Part V: Traffic exposure in adults.

Bartonova, A.; Clench-Aas, J.; Gram, F.; Grønskei, K.E.; Guerreiro, C.; Larssen, S. Tønnesen, D.; Walker, S.-E.

1999

Air pollution exposure monitoring and estimating. Part I: Integrated air quality monitoring systems.

Clench-Aas, J.; Bartonova, A.; Bøhler, T.; Grønskei, K E.; Sivertsen, B.; Larssen, S.

1999

Air pollution emission inventory using national high-resolution spatial parameters for the Nordic countries and analysis of PM2.5 spatial distribution for road transport and machinery and off-road sectors

Paunu, Ville-Veikko; Karvosenoja, Niko; Segersson, David; Lopez-Aparicio, Susana; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Thorsteinsson, Throstur; Vo, Dam Thanh; Kuenen, Jeroen; van der Gon, Hugo Denier; Jalkanen, Jukka-Pekka; Brandt, Jørgen; Geels, Camilla

Air pollution is an important cause of adverse health effects, even in the Nordic countries, which have relatively good air quality. Modelling-based air quality assessment of the health impacts relies on reliable model estimates of ambient air pollution concentrations, which furthermore rely on good-quality spatially resolved emission data. While quantitative emission estimates are the cornerstone of good emission data, description of the spatial distribution of the emissions is especially important for local air quality modelling at high resolution. In this paper we present a new air pollution emission inventory for the Nordic countries with high-resolution spatial allocation (1 km × 1 km) covering the years 1990, 1995, 2000, 2005, 2010, 2012, and 2014. The inventory is available at https://doi.org/10.5281/zenodo.10571094 (Paunu et al., 2023). To study the impact of applying national data and methods to the spatial distribution of the emissions, we compared road transport and machinery and off-road sectors to CAMS-REGv4.2, which used a consistent spatial distribution method throughout Europe for each sector. Road transport is a sector with well-established proxies for spatial distribution, while for the machinery and off-road sector, the choice of proxies is not as straightforward as it includes a variety of different type of vehicles and machines operating in various environments. We found that CAMS-REGv4.2 was able to produce similar spatial patterns to our Nordic inventory for the selected sectors. However, the resolution of our Nordic inventory allows for more detailed impact assessment than CAMS-REGv4.2, which had a resolution of 0.1° × 0.05° (longitude–latitude, roughly 5.5 km × 3.5–6.5 km in the Nordic countries). The EMEP/EEA Guidebook chapter on spatial mapping of emissions has recommendations for the sectoral proxies. Based on our analysis we argue that the guidebook should have separate recommendations for proxies for several sub-categories of the machinery and off-road sectors, instead of including them within broader sectors. We suggest that land use data are the best starting point for proxies for many of the subsectors, and they can be combined with other suitable data to enhance the spatial distribution. For road transport, measured traffic flow data should be utilized where possible, to support modelled data in the proxies.

2024

Air Pollution by Ozone Across Europe. The Handbook of Environmental Chemistry, vol. 26

Derwent, R.G.; Hjellbrekke, A.-G.

2013

Air pollution

Krogseth, Ingjerd Sunde

2019

Publikasjon
År
Kategori