Fant 9850 publikasjoner. Viser side 84 av 394:
2024
Costs and benefits of implementing an Environmental Speed Limit in a Nordic city
We present a comprehensive study on the impacts and associated changes in costs resulting from the implementation of Environmental Speed Limits (ESLs), as a measure to reduce PM10 and associated health effects. We present detailed modelled emissions (i.e., CO2, NOx, PM2.5 and PM10), concentration levels (i.e., PM2.5 and PM10) and population exposure to PM2.5 and PM10 under three scenarios of ESL implementation for the Metropolitan Area of Oslo. We find that whilst emissions of NOx and CO2 do not seem to show significant changes with ESL implementation, PM10 emissions are reduced by 6–12% and annual concentration levels are reduced up to 8%, with a subsequent reduction in population exposure. The modelled data is used to carry out a detailed analysis to quantify the changes in private and social costs for the roads in Oslo where ESL are implemented today. This involves assessments related to human health, climate, fuel consumption, time losses and the incidence of traffic accidents. For a scenario using actual speed data from ESL implementation, our study shows a net benefit associated with the implementation of ESLs, whilst for a theoretical scenario with strict speed limit compliance we find a net increase in costs. This is largely due to variation in costs due to time losses between the scenarios, although uncertainties are high.
Elsevier
2020
2023
2010
2011
2006
2009
1999
2002
Criteria for EUROAIRNET. The EEA air quality monitoring and information network. EEA Technical Report, 12
1999
2015
This study critically examines the workflow for untargeted analysis of volatile organic compounds (VOCs) in ambient air, from sampling strategies to data interpretation by using GC-HRMS. While untargeted approaches are well-established in liquid chromatography (LC) due to advanced-deconvolution tools and extensive metabolomic libraries, their application in gas chromatography (GC) remains less developed, particularly for VOCs. The high structural isomerism of VOCs and the relative novelty of GC-based untargeted methodologies present unique challenges, including limited software tools and reference libraries. Air samples from suburban and rural sites in central Italy were analyzed to explore chemical diversity and address methodological gaps. This study evaluates critical decisions, such as sampling strategies, extraction techniques, and data-processing workflows, highlighting the limitations of automated deconvolution tools and the need for manual validation. Results revealed distinct source contributions, with suburban areas showing higher levels of anthropogenic compounds and rural areas dominated by biogenic emissions. This work underscores the potential of GC-HRMS untargeted analysis to advance environmental chemistry, while addressing key pitfalls and providing practical recommendations for reliable application. By bridging methodological gaps, it offers a roadmap for future studies aiming to integrate untargeted and targeted approaches in air quality research.
MDPI
2025
2016
Critical review of the atmospheric composition observing capabilities for monitoring and forecasting
WMO
2025
2007
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014–2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Elsevier
2024
2025