Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9759 publikasjoner. Viser side 94 av 391:

Publikasjon  
År  
Kategori

Determination of PFC with Canister Sampling and Medusa GC–MS Analysis in Comparison to General IPCC Estimation Methods

Åsheim, Henrik; Isaksen, Morten; Hermansen, Ove; Schmidbauer, Norbert; Lunder, Chris Rene

2023

Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption.

Stohl, A.; Prata, A.J.; Eckhardt, S.; Clarisse, L.; Durant, A.; Henne, S.; Kristiansen, N.I.; Minikin, A.; Schumann, U.; Seibert, P.; Stebel, K.; Thomas, H.E.; Thorsteinsson, T.; Tørseth, K.; Weinzierl, B.

2011

Determination of time- and height-resolved volcanic ash emissions for quantitative ash dispersion modeling: The 2010 Eyjafjallajökull eruption. NILU PP

Stohl, A.; Prata, A.J.; Eckhardt, S.; Clarisse, L.; Durant, A.; Henne, S.; Kristiansen, N.I.; Minikin, A.; Schumann, U.; Seibert, P.; Stebel, K.; Thomas, H.E.; Thorsteinsson, T.; Tørseth, K.; Weinzierl, B.

2011

Determining the Bio‐Based Carbon Content of Surfactants

Mudge, Stephen Michael; Tropsch, Juergen; Beaudouin, Thierry; Séné, Christophe; Hormazabal, Horacio

In response to a mandate from the European Commission, the European Committee for Standardization (CEN) called on the technical committee CEN/TC 276 to develop a European standard (EN 17035) to define bio‐based surfactants and enable quantification of the bio‐based carbon content of surfactants based on radiocarbon analyses. This analytical approach was tested through directly contracted analyses and through a round robin procedure at commercial facilities in Europe. Initial results were unsatisfactory and further investigation identified issues surrounding the degree of homogenization in the samples. In general, the samples were only homogeneous at the gram level while the maximum quantity of material that could be introduced to the analytical process was at the milligram level. Having identified the root cause of the discrepancies between measured and expected results, new samples were sent to six European laboratories. The results were satisfactory indicating linearity and accuracy across the measurement range.

AOCS Press

2020

Determining the levels of persistent organic substances in soils from central South Africa. NILU F

Quinn, L.; Nieuwoudt, C.; Pieters, R.; Kylin, H.; Bouwman, H.

2007

Dette forurenser norske byer.

Lopez-Aparicio, S.

2016

Dette kan være årsaken til kraftig metanbyks i lufta over Norge

Myhre, Cathrine Lund (intervjuobjekt); Fjeld, Iselin Elise (journalist)

2021

Developing citizens' observatories for environmental monitoring and citizen empowerment: challenges and future scenarios.

Engelken-Jorge, M.; Moreno, J.; Keune, H.; Verheyden, W.; Bartonova, A.; CITI-SENSE consortium.

2014

Developing human biomonitoring as a 21st century toolbox within the European exposure science strategy 2020–2030

Zare Jeddi, Maryam; Hopf, Nancy B.; Louro, Henriqueta; Viegas, Susana; Galea, Karen S.; Pasanen-Kase, Robert; Santonen, Tiina; Mustieles, Vicente; Fernandez, Mariana F.; Verhagen, Hans; Bopp, Stephanie K.; Antignac, Jean Philippe; David, Arthur; Mol, Hans; Barouki, Robert; Audouze, Karine; Duca, Radu-Corneliu; Fantke, Peter; Scheepers, Paul; Ghosh, Manosij; Van Nieuwenhuyse, An; Lobo Vicente, Joana; Trier, Xenia; Rambaud, Loïc; Fillol, Clémence; Denys, Sebastien; Conrad, André; Kolossa-Gehring, Marike; Paini, Alicia; Arnot, Jon; Schulze, Florian; Jones, Kate; Sepai, Ovnair; Ali, Imran; Brennan, Lorraine; Benfenati, Emilio; Cubadda, Francesco; Mantovani, Alberto; Bartonova, Alena; Connolly, Alison; Slobodnik, Jaroslav; Bruinen de Bruin, Yuri; van Klaveren, Jacob; Palmen, Nicole; Dirven, Hubert; Husøy, Trine; Thomsen, Cathrine; Virgolino, Ana; Röösli, Martin; Gant, Tim; von Goetz, Natalie; Bessems, Jos

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission’s Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures.

In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders.

HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.

Elsevier

2022

Publikasjon
År
Kategori