Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2218 publikasjoner. Viser side 30 av 222:

Publikasjon  
År  
Kategori

Forslag til norsk overvåkingsnettverk for å oppfylle NEC‐direktivets krav om å overvåke effekter av luftforurensing

Garmo, Øyvind Aaberg; Bakkestuen, Vegar; Solberg, Sverre; Timmermann, Volkmar; Simpson, David; Vollsnes, Ane Victoria; Aarrestad, Per Arild; Ranneklev, Sissel Brit

NIVA

2020

EEA-33 Industrial Emissions Country Profiles. Methodology report. Updated July 2020.

Weydahl, Torleif; Young, Katrina; Hampshire, Kathryn; Goodwin, Justin; Granger, Marthe; Zeiger, Bastian

The industrial emissions country profiles summarise key data related to industry: its relevance with respect to economic contributions, energy and water consumption, as well as air and water emissions and waste generation. The country profiles are developed for the EEA-33 countries which includes the 28 EU Member States together with Iceland, Lichtenstein, Norway, Switzerland and Turkey.

The present revision (v. 3.0) of this report includes data available at date of release. This year, a new reporting, the so-called EU-Registry and thematic data reporting, is introduced in order to gather the former E-PRTR, LCP and IED reportings and finally replace them. The 2018 data are not yet readily available. Nevertheless, more quality checks have been performed on the latest E-PRTR database in order to have the cleanest final E-PRTR dataset possible. Hence, the industrial emissions country profiles are enriched with the most up-to-date data sources while still only covering the years up to 2017.

This report describes the underlying methodology to the industrial emissions country profiles that are presented as a Tableau story on the EEA webpages ([1]).

The scope of industry in this respect includes in short all industrial activities reported under the European Pollutant Release and Transfer Register (E-PRTR) excluding agriculture (activity code 7.(a) and 7.(b)). The data sources include Eurostat, the E-PRTR, greenhouse gas (GHG) emissions reported under the Monitoring Mechanism Regulation (MMR) and air pollutant emission inventories reported under the Convention on Long-range Transboundary Air Pollution (CLRTAP), each of which have their own data categories. A recently developed EEA-mapping which align these different categories is used ([2]). The data sources and industry scope is presented in full detail in the Annexes following this report.

The water and air pollutants including greenhouse gases are selected based on criteria related to their relative impact. Emissions of heavy metals to air and water have been combined by weighted averages using both eco toxicology and human toxicology characterisation factors ([3]). The amounts of hazardous and non-hazardous waste reported under Eurostat is presented, but excluding the major mineral waste that dominates the mining and construction sectors.

The data quality is evaluated and gap filling of Eurostat data is performed when needed. A method for E-PRTR outlier handling is proposed and applied where appropriate.

The significance of industry, given by gross value added (GVA), energy consumption and water use, as well as generation of waste are presented in the Tableau story as a sector percentage of EEA-33 gross total as well as percentage of country total. The trend in air and water pollution is presented as totals per pollutants relative to the latest year (2017). For the latest year the emissions are also given as percentage per sector relative to country total. The details on how the presented data is processed and aggregated is described in Annex 2.

The report is to a large extent based on previous methodology reports for “Industrial pollution country profiles”, but is also further developed to reflect feedback received through Eionet review and general requests from EEA and the European Commission.

ETC/ATNI

2020

Assessment of transboundary pollution by toxic substances: Heavy metals and POPs

Gusev, Alexey; Shatalov, Victor; Travnikov, Oleg; Batrakova, Nadezhda; Rozovskaya, Olga; Strijkina, Irina; Breivik, Knut; Bohlin-Nizzetto, Pernilla; Aas, Wenche; Mareckova, Katarina; Poupa, Stephan; Sosa, Carlos; Tista, Melanie; Wankmüller, Robert; Couvidat, Florian

Meteorological Synthesizing Centre ‐ East

2019

NORDUST : Nordic Road Dust Project

Gjerstad, Karl Idar; Gustafsson, Mats; Blomqvist, Göran; Denby, Bruce; Elmgren, Max; Grythe, Henrik; Janhäll, Sara; Järlskog, Ida; Johansson, Christer; Kulovuori, Sami; Kupiainen, Kaarle; Lundberg, Joacim; Malinen, Aleksi; Norman, Michael; Ritola, Roosa; Silvergren, Sanna; Stojilkovic, Ana; Sundvor, Ingrid; Thorsteinsson, Throstur; Stefani, Martina; Vogt, Matthias

Road dust is an important contributor to airborne particle pollution, especially in the Nordic countries where high road surface wear, due to studded tyre use as well as winter maintenance and operations including sanding and salting are important contributors. Even though the road dust problems are similar, the countries have tackled different parts of the problem with different research approaches, resulting in a complex knowledgebase in need of compilation. A former project, NORTRIP, started this work and implemented the knowledge into an emission model with a specially elaborated road dust focus. The model work has been used to identify knowledge gaps, intended to be filled within the NorDust project.Laboratory tests and controlled and uncontrolled field measurements as well as parametrisation and modelling have been used as tools to find, describe and implement issues concerning road dust formation, suspension and dynamics and road operation effects on emissions in facilities and sites in finland and Sweden. The NORTRIP model has been implemented and evaluated in Iceland, not previously involved in the model development, to identify input data needs.The project has resulted in an array of findings, of which some have been possible to implement in new parametrisations in the NORTRIP model. In the complex research area of road dust dynamics, the project has also resulted in a lot of practical experiences concerning experimental and measurement designs and evaluation possibilities that future research will be able to benefit from.

NordFoU

2019

CON+AIR: Addressing Conflicts of Climate and Air Pollution

Ó Broin, Eion; Kelly, Andrew; Sousa Santos, Gabriela; Grythe, Henrik; Kelleher, Luke

The CON+AIR project presents two counterfactual scenarios for emissions and concentrations of air pollutants in Ireland in the year 2030.

Environmental Protection Agency

2019

Esso Slagentangen. Måleprogram luftkvalitet 2017-2018.

Berglen, Tore Flatlandsmo; Nilsen, Anne-Cathrine

NILU

2019

Maximum limit values for selected hazardous organic contaminants (HOCs) in secondary raw materials used in fertilisers and soil products

Eggen, Trine; Heimstad, Eldbjørg Sofie; Nikiforov, Vladimir; Vogelsang, Christian

NIBIO

2019

Årsrapport 2019

Solbakken, Christine Forsetlund (eds.)

NILU

2019

ClairCity: Citizen-led air pollution reduction in cities. D7.4 Final City Policy Package – First City (Bristol)

Slingerland, Stephan; Artola, Irati; Bolscher, Hans; Barnes, Jo; Boushel, Corra; de Vito, Laura; Fogg-Rogers, Laura; Hayes, Enda; Rodrigues, Vera; Oliveira, Kevin; Lopes, Myriam; Vanherle, Kris; Csobod, Eva; Trozzi, Carlo; Knudsen, Svein; Soares, Joana

ClairCity Project

2019

Publikasjon
År
Kategori