Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2252 publikasjoner. Viser side 34 av 226:

Publikasjon  
År  
Kategori

Esso Slagentangen. Måleprogram luftkvalitet 2017-2018.

Berglen, Tore Flatlandsmo; Nilsen, Anne-Cathrine

NILU

2019

Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2018. Annual report.

Myhre, Cathrine Lund; Svendby, Tove Marit; Hermansen, Ove; Lunder, Chris Rene; Platt, Stephen Matthew; Fiebig, Markus; Fjæraa, Ann Mari; Hansen, Georg Heinrich; Schmidbauer, Norbert; Krognes, Terje; Walker, Sam-Erik

The report summaries the activities and results of the greenhouse gas monitoring at the Zeppelin Observatory situated on Svalbard in Arctic Norway during the period 2001-2018, and the greenhouse gas monitoring and aerosol observations from Birkenes for 2009-2018.

NILU

2019

Ozone measurements 2017

Hjellbrekke, Anne-Gunn; Solberg, Sverre

NILU

2019

Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations. Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment

Amlund, Heidi; Rakkestad, Kirsten Eline; Ruus, Anders; Starrfelt, Jostein; Beyer, Jonny; Brantsæter, Anne Lise; Bremer, Sara; Eriksen, Gunnar Sundstøl; Mariussen, Espen; Samdal, Ingunn Anita; Thomsen, Cathrine; Knutsen, Helle Katrine

Norwegian Scientific Committee for Food and Environment (VKM)

2019

Seabirds as indicators of distribution, trends and population level effects of plastics in the Arctic marine environment. Workshop Report

Dehnhard, Nina; Herzke, Dorte; Gabrielsen, Geir W.; Anker-Nilssen, Tycho; Ask, Amalie; Christensen-Dalsgaard, Signe; Descamps, Sebastien; Hallanger, Ingeborg G.; Hanssen, Sveinn Are; Langset, Magdalene; Monclús, Laura; O'Hanlon, Nina; Reiertsen, Tone Kristin; Strøm, Hallvard

Plastic pollution is a global and increasing threat to ecosystems. Plastics in the oceans are unevenly distributed, are transported by currents and can now be found in the most remote environments, including Arctic sea ice. The entanglement of wildlife by large plastic debris such as ropes is an obvious and well documented threat. However, the risks associated with the ingestion of smaller plastic particles, including microplastics (< 5mm) have been largely overlooked. Recent studies show that microplastic accumulates in the food web. Even in the Arctic and the deep sea, fish frequently contain microplastics in their guts. This, together with the fact that small microplastic particles can pass from the gut into blood and organs and also leach associated toxic additives raises health concerns for wildlife that ingest microplastic.

Within the North Atlantic, plastic ingestion in seabirds has been studied systematically only in the northern fulmar (Fulmarus glacialis), for which plastic particles > 1mm found in the stomachs of dead (beached or bycaught) birds are quantified. With the origin of these birds being unknown, it is, however, impossible to assess how plastics affect populations even of this one monitored species, let alone for other seabird species that differ in their foraging behaviour and risk to ingest plastics.

This report sums up the results of a workshop which aimed to identify possibilities for long-term monitoring of (micro-) plastic ingestion by seabirds in the framework of SEAPOP, the basal programme monitoring the performance of Norwegian seabird populations (www.seapop.no). The key conclusions were: 1) There is a need for baseline information on plastic ingestion across all seabird species to identify which species and populations are most suitable for monitoring. To obtain this information, the best approach is to investigate the stomach contents of dead birds (i.e. comparable methodology across all species). For long-term monitoring, not only species with high plastic ingestion are of interest, but also those with low plastic prevalence. 2) In the absence of information from (1), eight species that are complementary in their foraging behaviour and have a wide distribution range were selected as preliminary species of interest to monitor plastic ingestion. 3) For minimally invasive monitoring, regurgitates, fresh prey items and faeces are most suitable; 4) More information on prevalence of plastic ingestion is needed to identify optimal sample sizes for long-term monitoring. We therefore highlight the need for several pilot studies before establishing a plastic monitoring protocol within SEAPOP.

Norsk institutt for naturforskning (NINA)

2019

Heavy metals and POP measurements, 2017

Aas, Wenche; Bohlin-Nizzetto, Pernilla

NILU

2019

NanoReg2 - case study. Test of genotoxicity and cytotoxicity of silica nanomaterials prepared by HiQ-Nano.

Mariussen, Espen; Hudecova, Alexandra Misci; Longhin, Eleonora; Dusinska, Maria; Rundén-Pran, Elise

NILU

2019

CON+AIR: Addressing Conflicts of Climate and Air Pollution

Broin, Eion Ó; Kelly, Andrew; Santos, Gabriela Sousa; Grythe, Henrik; Kelleher, Luke

The CON+AIR project presents two counterfactual scenarios for emissions and concentrations of air pollutants in Ireland in the year 2030.

Environmental Protection Agency

2019

Spredningsberegninger for ammoniakkutslipp. Leangen idrettsanlegg i Trondheim.

Tønnesen, Dag Arild

NILU har gjennomført spredningsberegninger for utslipp av ammoniakk (NH3) ved Leangen idrettsanlegg I Trondheim. Beregningene er utført for å undersøke hvilke konsentrasjoner av ammoniakk som kan forekomme i bakkenivå for ulike høyder av avkast for ammoniakkdamp. Beregningene viser at avkastet bør være 21 m over bakkenivå for å overholde grenseverdi for arbeidsatmosfære. Så lenge utslippet pågår vil det forekomme timemiddelkonsentrasjoner av ammoniakk over luktegrensen nedvinds for utslippet.

NILU

2019

Publikasjon
År
Kategori