Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2611 publikasjoner. Viser side 44 av 262:

Publikasjon  
År  
Kategori

Impacts of UV irradiance and medium-energy electron precipitation on the North Atlantic oscillation during the 11-year solar cycle

Guttu, Sigmund; Orsolini, Yvan; Stordal, Frode; Otterå, Odd Helge; Omrani, Nour-Eddine; Tartaglione, Nazario; Verronen, Pekka T.; Rodger, Craig J.; Clilverd, Mark A.

MDPI

2021

Moving forward in microplastic research: A Norwegian perspective

Lusher, Amy; Hurley, Rachel; Arp, Hans Peter H; Booth, Andy; Bråte, Inger Lise Nerland; Gabrielsen, Geir W.; Gomiero, Alessio; Gomes, Tania; Grøsvik, Bjørn Einar; Green, Norman ; Haave, Marte; Hallanger, Ingeborg G.; Halsband, Claudia; Herzke, Dorte; Joner, Erik J; Kögel, Tanja; Rakkestad, Kirsten; Ranneklev, Sissel B.; Wagner, Martin; Olsen, Marianne

Elsevier

2021

Large seasonal and interannual variations of biogenic sulfur compounds in the Arctic atmosphere (Svalbard; 78.9° N, 11.9° E)

Jang, Sehyun; Park, Ki-Tae; Lee, Kitack; Yoon, Young Jun; Kim, Kitae; Chung, Hyun Young; Jang, Eunho; Becagli, Silvia; Lee, Bang Young; Traversi, Rita; Eleftheriadis, Konstantinos; Krejci, Radovan; Hermansen, Ove

2021

Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands of Svalbard

Song, Congbo; Dall'Osto, Manuel; Lupi, Angelo; Mazzola, Mauro; Traversi, Rita; Becagli, Silvia; Gilardoni, Stefania; Vratolis, Stergios; Yttri, Karl Espen; Beddows, David C.S.; Schmale, Julia; Brean, James; Kramawijaya, Agung Ghani; Harrison, Roy M.; Shi, Zongbo

2021

Dimethyl Sulfide-Induced Increase in Cloud Condensation Nuclei in the Arctic Atmosphere

Park, Ki-Tae; Yoon, Young Jun; Lee, Kitack; Tunved, Peter; Krejci, Radovan; Ström, Johan; Jang, Eunho; Kang, Hyo Jin; Jang, Seyhun; Park, Jiyeon; Lee, Bang Young; Traversi, Rita; Becagli, Silvia; Hermansen, Ove

American Geophysical Union (AGU)

2021

Introducing a nested multimedia fate and transport model for organic contaminants (NEM)

Breivik, Knut; Eckhardt, Sabine; McLachlan, Michael S; Wania, Frank

Some organic contaminants, including the persistent organic pollutants (POPs), have achieved global distribution through long range atmospheric transport (LRAT). Regulatory efforts, monitoring programs and modelling studies address the LRAT of POPs on national, continental (e.g. Europe) and/or global scales. Whereas national and continental-scale models require estimates of the input of globally dispersed chemicals from outside of the model domain, existing global-scale models either have relatively coarse spatial resolution or are so computationally demanding that it limits their usefulness. Here we introduce the Nested Exposure Model (NEM), which is a multimedia fate and transport model that is global in scale yet can achieve high spatial resolution of a user-defined target region without huge computational demands. Evaluating NEM by comparing model predictions for PCB-153 in air with measurements at nine long-term monitoring sites of the European Monitoring and Evaluation Programme (EMEP) reveals that nested simulations at a resolution of 1° × 1° yield results within a factor of 1.5 of observations at sites in northern Europe. At this resolution, the model attributes more than 90% of the atmospheric burden within any of the grid cells containing an EMEP site to advective atmospheric transport from elsewhere. Deteriorating model performance with decreasing resolution (15° × 15°, 5° × 5° and 1° × 1°), manifested by overestimation of concentrations across most of northern Europe by more than a factor of 3, illustrates the effect of numerical diffusion. Finally, we apply the model to demonstrate how the choice of spatial resolution affect predictions of atmospheric deposition to the Baltic Sea. While we envisage that NEM may be used for a wide range of applications in the future, further evaluation will be required to delineate the boundaries of applicability towards chemicals with divergent fate properties as well as in environmental media other than air.

Royal Society of Chemistry (RSC)

2021

Modeling study of the impact of SO2 volcanic passive emissions on the tropospheric sulfur budget

Lamotte, Claire; Guth, Jonathan; Marécal, Virginie; Cussac, Martin; Hamer, Paul David; Theys, Nicolas; Schneider, Philipp

Well constrained volcanic emissions inventories in chemistry transport models are necessary to study the impacts induced by these sources on the tropospheric sulfur composition and on sulfur species concentrations and depositions at the surface. In this paper, the changes induced by the update of the volcanic sulfur emissions inventory are studied using the global chemistry transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle). Unlike the previous inventory (Andres and Kasgnoc, 1998), the updated one (Carn et al., 2016, 2017) uses more accurate information and includes contributions from both passive degassing and eruptive emissions. Eruptions are provided as daily total amounts of sulfur dioxide (SO2) emitted by volcanoes in the Carn et al. (2016, 2017) inventories, and degassing emissions are provided as annual averages with the related mean annual uncertainties of those emissions by volcano. Information on plume altitudes is also available and has been used in the model. We chose to analyze the year 2013, for which only a negligible amount of eruptive volcanic SO2 emissions is reported, allowing us to focus the study on the impact of passive degassing emissions on the tropospheric sulfur budget. An evaluation against the Ozone Monitoring Instrument (OMI) SO2 total column and MODIS (Moderate-Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) observations shows the improvements of the model results with the updated inventory. Because the global volcanic SO2 flux changes from 13 Tg yr−1 in Andres and Kasgnoc (1998) to 23.6 Tg yr−1 in Carn et al. (2016, 2017), significant differences appear in the global sulfur budget, mainly in the free troposphere and in the tropics. Even though volcanic SO2 emissions represent 15 % of the total annual sulfur emissions, the volcanic contribution to the tropospheric sulfate aerosol burden is 25 %, which is due to the higher altitude of emissions from volcanoes. Moreover, a sensitivity study on passive degassing emissions, using the annual uncertainties of emissions per volcano, also confirmed the nonlinear link between tropospheric sulfur species content with respect to volcanic SO2 emissions. This study highlights the need for accurate estimates of volcanic sources in chemistry transport models in order to properly simulate tropospheric sulfur species.

2021

Assessment of Low-Cost Particulate Matter Sensor Systems against Optical and Gravimetric Methods in a Field Co-Location in Norway

Vogt, Matthias; Schneider, Philipp; Castell, Nuria; Hamer, Paul David

The increased availability of commercially-available low-cost air quality sensors combined with increased interest in their use by citizen scientists, community groups, and professionals is resulting in rapid adoption, despite data quality concerns. We have characterized three out-the-box PM sensor systems under different environmental conditions, using field colocation against reference equipment. The sensor systems integrate Plantower 5003, Sensirion SPS30 and Alphasense OCP-N3 PM sensors. The first two use photometry as a measuring technique, while the third one is an optical particle counter. For the performance evaluation, we co-located 3 units of each manufacturer and compared the results against optical (FIDAS) and gravimetric (KFG) methods for a period of 7 weeks (28 August to 19 October 2020). During the period from 2nd and 5th October, unusually high PM concentrations were observed due to a long-range transport episode. The results show that the highest correlations between the sensor systems and the optical reference are observed for PM1, with coefficients of determination above 0.9, followed by PM2.5. All the sensor units struggle to correctly measure PM10, and the coefficients of determination vary between 0.45 and 0.64. This behavior is also corroborated when using the gravimetric method, where correlations are significantly higher for PM2.5 than for PM10, especially for the sensor systems based on photometry. During the long range transport event the performance of the photometric sensors was heavily affected, and PM10 was largely underestimated. The sensor systems evaluated in this study had good agreement with the reference instrumentation for PM1 and PM2.5; however, they struggled to correctly measure PM10. The sensors also showed a decrease in accuracy when the ambient size distribution was different from the one for which the manufacturer had calibrated the sensor, and during weather conditions with high relative humidity. When interpreting and communicating air quality data measured using low-cost sensor systems, it is important to consider such limitations in order not to risk misinterpretation of the resulting data.

MDPI

2021

Black Carbon Emission Reduction Due to COVID-19 Lockdown in China

Jia, Mengwei; Evangeliou, Nikolaos; Eckhardt, Sabine; Huang, Xin; Gao, Jian; Ding, Aijun; Stohl, Andreas

American Geophysical Union (AGU)

2021

Publikasjon
År
Kategori