Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2635 publikasjoner. Viser side 5 av 264:

Publikasjon  
År  
Kategori

Inverse modeling of 137Cs during Chernobyl 2020 wildfires without the first guess

Tichý, Ondřej; Evangeliou, Nikolaos; Selivanova, Anna; Šmídl, Václav

Elsevier

2025

Climate change rivals fertilizer use in driving soil nitrous oxide emissions in the northern high latitudes: Insights from terrestrial biosphere models

Pan, Naiqing; Tian, Hanqin; Shi, Hao; Pan, Shufen; Canadell, Josep G.; Chang, Jinfeng; Ciais, Philippe; Davidson, Eric A.; Hugelius, Gustaf; Ito, Akihiko; Jackson, Robert B.; Joos, Fortunat; Lienert, Sebastian; Millet, Dylan B.; Olin, Stefan; Patra, Prabir K.; Thompson, Rona Louise; Vuichard, Nicolas; Wells, Kelley C.; Wilson, Chris; You, Yongfa; Zaehle, Sönke

Nitrous oxide (N2O) is the most important stratospheric ozone-depleting agent based on current emissions and the third largest contributor to increased net radiative forcing. Increases in atmospheric N2O have been attributed primarily to enhanced soil N2O emissions. Critically, contributions from soils in the Northern High Latitudes (NHL, >50°N) remain poorly quantified despite their exposure to rapid rates of regional warming and changing hydrology due to climate change. In this study, we used an ensemble of six process-based terrestrial biosphere models (TBMs) from the Global Nitrogen/Nitrous Oxide Model Intercomparison Project (NMIP) to quantify soil N2​O emissions across the NHL during 1861–2016. Factorial simulations were conducted to disentangle the contributions of key driving factors, including climate change, nitrogen inputs, land use change, and rising atmospheric CO2 concentration​, to the trends in emissions. The NMIP models suggests NHL soil N2O emissions doubled from 1861 to 2016, increasing on average by 2.0 ± 1.0 Gg N/yr (p

Elsevier

2025

Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record

Legrand, Michel; Vorobyev, Mstislav; Bokuchava, Daria; Kutuzov, Stanislav; Plach, Andreas; Stohl, Andreas; Khairedinova, Alexandra; Mikhalenko, Vladimir; Vinogradova, Maria; Eckhardt, Sabine; Preunkert, Susanne

Atmospheric ammonia (NH3) is a key transboundary air pollutant that contributes to the impacts of nitrogen and acidity on terrestrial ecosystems. Ammonia also contributes to the atmospheric aerosol that affects air quality. Emission inventories indicate that NH3 was predominantly emitted by agriculture over the 19th and 20th centuries but, up to now, these estimates have not been compared to long-term observations. To document past atmospheric NH3 pollution in south-eastern Europe, ammonium (NH) was analysed along an ice core extracted from Mount Elbrus in the Caucasus, Russia. The NH ice-core record indicates a 3.5-fold increase in concentrations between 1750 and 1990 CE. Remaining moderate prior to 1950 CE, the increase then accelerated to reach a maximum in 1989 CE. Comparison between ice-core trends and estimated past emissions using state-of-the-art atmospheric transport modelling of submicron-scale aerosols (FLEXPART (FLEXible PARTicle dispersion) model) indicates good agreement with the course of estimated NH3 emissions from south-eastern Europe since ∼ 1750 CE, with the main contributions from south European Russia, Türkiye, Georgia, and Ukraine. Examination of ice deposited prior to 1850 CE, when agricultural activities remained limited, suggests an NH ice concentration related to natural soil emissions representing ∼ 20 % of the 1980–2009 CE NH level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soil. These findings on historical NH3 emission trends represent a significant contribution to the understanding of ammonia emissions in Europe over the last 250 years.

2025

Environmental sustainability of urban expansion: Implications for transport emissions, air pollution, and city growth

Lopez-Aparicio, Susana; Grythe, Henrik; Drabicki, Arkadiusz; Chwastek, Konrad; Tobola, Kamila; Górska-Niemas, Lidia; Kierpiec, Urszula; Markelj, Miha; Strużewska, Joanna; Kud, Bartosz; Sousa Santos, Gabriela

This study examines the environmental impacts of urban growth in Warsaw since 2006 and models the implications of future urban development for traffic pollutant emissions and pollution levels. Our findings demonstrate that, over the past two decades, urban sprawl has resulted in decreases in accessibility to public transport, social services, and natural areas. We analyse CO2 traffic emissions, NO2 concentrations, and population exposure across urban areas in future scenarios of further sprawling or alternative compacting land-use development. Results indicate that a compact future scenario reduces transport CO2 emissions and urban NO2 levels, though increases in population density raise exposure to air pollution. A sprawl future scenario increases CO2 and NOx emissions due to longer commutes and congestion, and NO2 levels increase up to 25% in parts of the city. Several traffic abatement strategies were simulated, and in all simulations a compact city consistently yields the largest reductions in CO2 emissions and NO2 levels, implying that the best abatement strategy for combating negative consequences of sprawl is to reduce sprawling. In both city layouts, network-wide improvements of public transport travel times gave significantly reduced emissions. Combined, our findings highlight the importance of co-beneficial urban planning strategies to balance CO2 emissions reduction, and air pollution exposure in expanding cities.

Elsevier

2025

Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: Implications for model constraints and emission inventories

Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Bauer, Susanne; Bergman, Tommi; Bian, Huisheng; Curci, Gabriele; Johnson, Ben; Kaiser, Johannes; Kipling, Zak; Kokkola, Harri; Liu, Xiaohong; Mezuman, Keren; Mielonen, Tero; Myhre, Gunnar; Pan, Xiaohua; Protonotariou, Anna; Remy, Samuel; Skeie, Ragnhild Bieltvedt; Stier, Philip; Toshihiko, Takemura; Tsigaridis, Kostas; Wang, Hailong; Watson-Parris, Duncan; Zhang, Kai

We assessed the biomass burning (BB) smoke aerosol optical depth (AOD) simulations of 11 global models that participated in the AeroCom phase III BB emission experiment. By comparing multi-model simulations and satellite observations in the vicinity of fires over 13 regions globally, we (1) assess model-simulated BB AOD performance as an indication of smoke source–strength, (2) identify regions where the common emission dataset used by the models might underestimate or overestimate smoke sources, and (3) assess model diversity and identify underlying causes as much as possible. Using satellite-derived AOD snapshots to constrain source strength works best where BB smoke from active sources dominates background non-BB aerosol, such as in boreal forest regions and over South America and southern hemispheric Africa. The comparison is inconclusive where the total AOD is low, as in many agricultural burning areas, and where the background is high, such as parts of India and China. Many inter-model BB AOD differences can be traced to differences in values for the mass ratio of organic aerosol to organic carbon, the BB aerosol mass extinction efficiency, and the aerosol loss rate from each model. The results point to a need for increased numbers of available BB cases for study in some regions and especially to a need for more extensive regional-to-global-scale measurements of aerosol loss rates and of detailed particle microphysical and optical properties; this would both better constrain models and help distinguish BB from other aerosol types in satellite retrievals. More generally, there is the need for additional efforts at constraining aerosol source strength and other model attributes with multi-platform observations.

2025

Exploring the Chemical Complexity and Sources of Airborne Fine Particulate Matter in East Asia by Nontarget Analysis and Multivariate Modeling

Froment, Jean Francois; Park, Jong-Uk; Kim, Sang-Woo; Cho, Yoonjin; Choi, Soobin; Seo, Young Hun; Baik, Seungyun; Lee, Ji Eun; Martin, Jonathan W.

The complex and dynamic nature of airborne fine particulate matter (PM2.5) has hindered understanding of its chemical composition, sources, and toxic effects. In the first steps of a larger study, here, we aimed to elucidate relationships between source regions, ambient conditions, and the chemical composition in water extracts of PM2.5 samples (n = 85) collected over 16 months at an observatory in the Yellow Sea. In each extract, we quantified elements and major ions and profiled the complex mixtures of organic compounds by nontarget mass spectrometry. More than 50,000 nontarget features were detected, and by consensus of in silico tools, we assigned a molecular formula to 13,907 features. Oxygenated compounds were most prominent, followed by mixed nitrogenated/oxygenated compounds, organic sulfates, and sulfonates. Spectral matching enabled identification or structural annotation of 43 substances, and a workflow involving SIRIUS and MS-DIAL software enabled annotation of 74 unknown per- and polyfluoroalkyl substances with primary source regions in China and the Korean Peninsula. Multivariate modeling revealed seasonal variations in chemistry, attributable to the combination of warmer temperatures and maritime source regions in summer and to cooler temperatures and source regions of China in winter.

2025

Burning of woody debris dominates fire emissions in the Amazon and Cerrado

Forkel, Matthias; Wessollek, Christine; Huijnen, Vincent; Andela, Niels; de Laat, Adrianus; Kinalczyk, Daniel; Marrs, Christopher; van Wees, Dave; Bastos, Ana; Ciais, Philippe; Fawcett, Dominic; Kaiser, Johannes; Klauberg, Carine; Kutchartt, Erico; Leite, Rodrigo V.; Li, Wei; Silva, Carlos; Sitch, Stephen; De Souza, Jefferson Goncalves; Zaehle, Sönke; Plummer, Stephen

2025

Indian Land Carbon Sink Estimated from Surface and GOSAT Observations

Nayagam, Lorna Raja; Maksyutov, Shamil; Janardanan, Rajesh; Oda, Tomohiro; Tiwari, Yogesh K.; Sreenivas, Gaddamidi; Datye, Amey; Jain, Chaithanya D.; Ratnam, Madineni Venkat; Sinha, Vinayak; Hakkim, Haseeb; Terao, Yukio; Naja, Manish; Ahmed, Md. Kawser; Mukai, Hitoshi; Zeng, Jiye; Kaiser, Johannes; Someya, Yu; Yoshida, Yukio

The carbon sink over land plays a key role in the mitigation of climate change by removing carbon dioxide (CO2) from the atmosphere. Accurately assessing the land sink capacity across regions should contribute to better future climate projections and help guide the mitigation of global emissions towards the Paris Agreement. This study estimates terrestrial CO2 fluxes over India using a high-resolution global inverse model that assimilates surface observations from the global observation network and the Indian subcontinent, airborne sampling from Brazil, and data from the Greenhouse gas Observing SATellite (GOSAT) satellite. The inverse model optimizes terrestrial biosphere fluxes and ocean-atmosphere CO2 exchanges independently, and it obtains CO2 fluxes over large land and ocean regions that are comparable to a multi-model estimate from a previous model intercomparison study. The sensitivity of optimized fluxes to the weights of the GOSAT satellite data and regional surface station data in the inverse calculations is also examined. It was found that the carbon sink over the South Asian region is reduced when the weight of the GOSAT data is reduced along with a stricter data filtering. Over India, our result shows a carbon sink of 0.040 ± 0.133 PgC yr−1 using both GOSAT and global surface data, while the sink increases to 0.147 ± 0.094 PgC yr−1 by adding data from the Indian subcontinent. This demonstrates that surface observations from the Indian subcontinent provide a significant additional constraint on the flux estimates, suggesting an increased sink over the region. Thus, this study highlights the importance of Indian sub-continental measurements in estimating the terrestrial CO2 fluxes over India. Additionally, the findings suggest that obtaining robust estimates solely using the GOSAT satellite data could be challenging since the GOSAT satellite data yield significantly varies over seasons, particularly with increased rain and cloud frequency.

MDPI

2025

Transformation Product Formation and Removal Efficiency of Emerging Pollutants by Three-Dimensional Ceramic Carbon Foam-Supported Electrochemical Oxidation

Froment, Jean Francois; Pierpaoli, Mattia; Gundersen, Hans; Davanger, Kirsten; Bjørneby, Stine Marie; Eikenes, Heidi; Skowierzak, Grzegorz; Ślepskic, Paweł; Jakóbczyk, Paweł; Bogdanowicz, Robert; Ossowski, Tadeusz; Rostkowski, Pawel

This study evaluated galvanostatic three-dimensional electrolysis using ceramic carbon foam anodes for the removal of emerging pollutants from wastewater and assessed transformation product formation. Five pollutants (paracetamol, triclosan, bisphenol A, caffeine, and diclofenac) were selected based on their detection in wastewater treatment plant effluents. Electrochemical oxidation was carried out on artificial wastewater spiked with these compounds under galvanostatic conditions (50, 125, and 250 mA) using a stainless steel tube electrolyzer with three ceramic carbon foam anodes and a stainless steel cathode. Decreasing pollutant concentrations were observed in all of the experiments. Nontarget chemical analysis using liquid chromatography coupled to a high-resolution mass spectrometer detected 338 features with increasing intensity including 12 confirmed transformation products (TPs). Real wastewater effluent spiked with the pollutants was then electrolyzed, again showing pollutant removal, with 9 of the 12 previously identified TPs present and increasing. Two TPs (benzamide and 2,4-dichlorophenol) are known toxicants, indicating the formation of a potential toxic by-product during electrolysis. Furthermore, electrolysis of unspiked real wastewater revealed the removal of five pharmaceuticals and a drug metabolite. While demonstrating electrolysis’ ability to degrade pollutants in wastewater, the study underscores the need to investigate transformation product formation and toxicity implications of the electrolysis process.

American Chemical Society (ACS)

2025

Publikasjon
År
Kategori