Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2593 publikasjoner. Viser side 64 av 260:

Publikasjon  
År  
Kategori

The MetVed model: development and evaluation of emissions from residential wood combustion at high spatio-temporal resolution in Norway

Grythe, Henrik; Lopez-Aparicio, Susana; Vogt, Matthias; Vo, Dam Thanh; Hak, Claudia; Halse, Anne Karine; Hamer, Paul David; Sousa Santos, Gabriela

We present here emissions estimated from a newly developed emission model for residential wood combustion (RWC) at high spatial and temporal resolution, which we name the MetVed model. The model estimates hourly emissions resolved on a 250 m grid resolution for several compounds, including particulate matter (PM), black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) in Norway for a 12-year period. The model uses novel input data and calculation methods that combine databases built with an unprecedented high level of detail and near-national coverage. The model establishes wood burning potential at the grid based on the dependencies between variables that influence emissions: i.e. outdoor temperature, number of and type and size of dwellings, type of available heating technologies, distribution of wood-based heating installations and their associated emission factors. RWC activity with a 1 h temporal profile was produced by combining heating degree day and hourly and weekday activity profiles reported by wood consumers in official statistics. This approach results in an improved characterisation of the spatio-temporal distribution of wood use, and subsequently of emissions, required for urban air quality assessments. Whereas most variables are calculated based on bottom-up approaches on a 250 m spatial grid, the MetVed model is set up to use official wood consumption at the county level and then distributes consumption to individual grids proportional to the physical traits of the residences within it. MetVed combines consumption with official emission factors that makes the emissions also upward scalable from the 250 m grid to the national level.

The MetVed spatial distribution obtained was compared at the urban scale to other existing emissions at the same scale. The annual urban emissions, developed according to different spatial proxies, were found to have differences up to an order of magnitude. The MetVed total annual PM2.5 emissions in the urban domains compare well to emissions adjusted based on concentration measurements. In addition, hourly PM2.5 concentrations estimated by an Eulerian dispersion model using MetVed emissions were compared to measurements at air quality stations. Both hourly daily profiles and the seasonality of PM2.5 show a slight overestimation of PM2.5 levels. However, a comparison with black carbon from biomass burning and benzo(a)pyrene measurements indicates higher emissions during winter than that obtained by MetVed. The accuracy of urban emissions from RWC relies on the accuracy of the wood consumption (activity data), emission factors and the spatio-temporal distribution. While there are still knowledge gaps regarding emissions, MetVed represents a vast improvement in the spatial and temporal distribution of RWC.

2019

The Eulerian urban dispersion model EPISODE – Part 2: Extensions to the source dispersion and photochemistry for EPISODE–CityChem v1.2 and its application to the city of Hamburg

Karl, Matthias; Walker, Sam-Erik; Solberg, Sverre; Ramacher, Martin O. P.

This paper describes the CityChem extension of the Eulerian urban dispersion model EPISODE. The development of the CityChem extension was driven by the need to apply the model in largely populated urban areas with highly complex pollution sources of particulate matter and various gaseous pollutants. The CityChem extension offers a more advanced treatment of the photochemistry in urban areas and entails specific developments within the sub-grid components for a more accurate representation of dispersion in proximity to urban emission sources. Photochemistry on the Eulerian grid is computed using a numerical chemistry solver. Photochemistry in the sub-grid components is solved with a compact reaction scheme, replacing the photo-stationary-state assumption. The simplified street canyon model (SSCM) is used in the line source sub-grid model to calculate pollutant dispersion in street canyons. The WMPP (WORM Meteorological Pre-Processor) is used in the point source sub-grid model to calculate the wind speed at plume height. The EPISODE–CityChem model integrates the CityChem extension in EPISODE, with the capability of simulating the photochemistry and dispersion of multiple reactive pollutants within urban areas. The main focus of the model is the simulation of the complex atmospheric chemistry involved in the photochemical production of ozone in urban areas. The ability of EPISODE–CityChem to reproduce the temporal variation of major regulated pollutants at air quality monitoring stations in Hamburg, Germany, was compared to that of the standard EPISODE model and the TAPM (The Air Pollution Model) air quality model using identical meteorological fields and emissions. EPISODE–CityChem performs better than EPISODE and TAPM for the prediction of hourly NO2 concentrations at the traffic stations, which is attributable to the street canyon model. Observed levels of annual mean ozone at the five urban background stations in Hamburg are captured by the model within ±15 %. A performance analysis with the FAIRMODE DELTA tool for air quality in Hamburg showed that EPISODE–CityChem fulfils the model performance objectives for NO2 (hourly), O3 (daily max. of the 8 h running mean) and PM10 (daily mean) set forth in the Air Quality Directive, qualifying the model for use in policy applications. Envisaged applications of the EPISODE–CityChem model are urban air quality studies, emission control scenarios in relation to traffic restrictions and the source attribution of sector-specific emissions to observed levels of air pollutants at urban monitoring stations.

2019

Pervasive Arctic lead pollution suggests substantial growth in medieval silver production modulated by plague, climate, and conflict

McConnell, Joseph R.; Chellman, Nathan J.; Wilson, Andrew I.; Stohl, Andreas; Arienzo, Monica M.; Eckhardt, Sabine; Fritzsche, Diedrich; Kipfstuhl, Sepp; Opel, Thomas; Place, Philip F.; Steffensen, Jørgen Peder

2019

Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment – An update

Muir, Derek; Bossi, Rossana; Carlsson, Pernilla; Evans, Marlene; De Silva, Amila; Halsall, Crispin; Rauert, Cassandra; Herzke, Dorte; Hung, Hayley; Letcher, Robert; Rigét, Frank; Roos, Anna

Poly- and perfluoroalkyl substances (PFASs) are important environmental contaminants globally and in the early 2000s they were shown to be ubiquitous contaminants in Arctic wildlife. Previous reviews by Butt et al. and Letcher et al. have covered studies on levels and trends of PFASs in the Arctic that were available to 2009. The purpose of this review is to focus on more recent work, generally published between 2009 and 2018, with emphasis on PFASs of emerging concern such as perfluoroalkyl carboxylates (PFCAs) and short-chain perfluoroalkyl sulfonates (PFSAs) and their precursors. Atmospheric measurements over the period 2006–2014 have shown that fluorotelomer alcohols (FTOHs) as well as perfluorobutanoic acid (PFBA) and perfluoroctanoic acid (PFOA) are the most prominent PFASs in the arctic atmosphere, all with increasing concentrations at Alert although PFOA concentrations declined at the Zeppelin Station (Svalbard). Results from ice cores show generally increasing deposition of PFCAs on the Devon Ice cap in the Canadian arctic while declining fluxes were found in a glacier on Svalbard. An extensive dataset exists for long-term trends of long-chain PFCAs that have been reported in Arctic biota with some datasets including archived samples from the 1970s and 1980s. Trends in PFCAs over time vary among the same species across the North American Arctic, East and West Greenland, and Svalbard. Most long term time series show a decline from higher concentrations in the early 2000s. However there have been recent (post 2010) increasing trends of PFCAs in ringed seals in the Canadian Arctic, East Greenland polar bears and in arctic foxes in Svalbard. Annual biological sampling is helping to determine these relatively short term changes. Rising levels of some PFCAs have been explained by continued emissions of long-chain PFCAs and/or their precursors and inflows to the Arctic Ocean, especially from the North Atlantic. While the effectiveness of biological sampling for temporal trends in long-chain PFCAs and PFSAs has been demonstrated, this does not apply to the C4–C8–PFCAs, perfluorobutane sulfonamide (FBSA), or perfluorobutane sulfonate (PFBS) which are generally present at low concentrations in biota. In addition to air sampling, sampling abiotic media such as glacial cores, and annual sampling of lake waters and seawater would appear to be the best approaches for investigating trends in the less bioaccumulative PFASs.

2019

Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis

Fiorito, Giovanni; McCrory, Cathal; Robinson, Oliver; Carmeli, Cristian; Rosales, Carolina Ochoa; Zhang, Yan; Colicino, Elena; Dugué, Pierre-Antoine; Artaud, Fanny; McKay, Gareth J.; Jeong, Ayoung; Mishra, Pashupati P.; Nøst, Therese Haugdahl; Krogh, Vittorio; Panico, Salvatore; Sacerdote, Carlotta; Tumino, Rosario; Palli, Domenico; Matullo, Giuseppe; Guarrera, Simonetta; Gandini, Martina; Bochud, Murielle; Dermitzakis, Emmanouil; Muka, Taulant; Schwartz, Joel; Vokonas, Pantel S.; Just, Allan; Hodge, Allison M.; Giles, Graham G.; Southey, Melissa C.; Hurme, Mikko A.; Young, Ian; McKnight, Amy Jayne; Kunze, Sonja; Waldenberger, Melanie; Peters, Annette; Schwettmann, Lars; Lund, Eiliv; Baccarelli, Andrea; Milne, Roger L.; Kenny, Rose A.; Elbaz, Alexis; Brenner, Hermann; Kee, Frank; Voortman, Trudy; Probst-Hensch, Nicole; Lehtimäki, Terho; Elliot, Paul; Stringhini, Silvia; Vineis, Paolo; Polidoro, Silvia

Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.

We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.

The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.

Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity.

2019

The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm: version 4.1 description and evaluation

Callewaert, Sieglinde; Vandenbussche, Sophie; Kumps, Nicolas; Kylling, Arve; Shang, Xiaoxia; Komppula, Mika; Goloub, Philippe; De Mazière, Martine

The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm retrieves vertical dust concentration profiles from cloud-free Infrared Atmospheric Sounding Interferometer (IASI) thermal infrared (TIR) radiances using Rodgers' optimal estimation method (OEM). We describe the new version 4.1 and evaluation results. Main differences with respect to previous versions are the Levenberg–Marquardt modification of the OEM, the use of the logarithm of the concentration in the retrieval and the use of Radiative Transfer for TOVS (RTTOV) for in-line radiative transfer calculations. The dust aerosol concentrations are retrieved in seven 1 km thick layers centered at 0.5 to 6.5 km. A global data set of the daily dust distribution was generated with MAPIR v4.1 covering September 2007 to June 2018, with further extensions planned every 6 months. The post-retrieval quality filters reject about 16 % of the retrievals, a huge improvement with respect to the previous versions in which up to 40 % of the retrievals were of bad quality. The median difference between the observed and fitted spectra of the good-quality retrievals is 0.32 K, with lower values over oceans. The information content of the retrieved profiles shows a dependence on the total aerosol load due to the assumption of a lognormal state vector. The median degrees of freedom in dusty scenes (min 10 µm AOD of 0.5) is 1.4. An evaluation of the aerosol optical depth (AOD) obtained from the integrated MAPIR v4.1 profiles was performed against 72 AErosol RObotic NETwork (AERONET) stations. The MAPIR AOD correlates well with the ground-based data, with a mean correlation coefficient of 0.66 and values as high as 0.88. Overall, there is a mean AOD (550 nm) positive bias of only 0.04 with respect to AERONET, which is an extremely good result. The previous versions of MAPIR were known to largely overestimate AOD (about 0.28 for v3). A second evaluation exercise was performed comparing the mean aerosol layer altitude from MAPIR with the mean dust altitude from Cloud–Aerosol LIdar with Orthogonal Polarization (CALIOP). A small underestimation was found, with a mean difference of about 350 m (standard deviation of about 1 km) with respect to the CALIOP cumulative extinction altitude, which is again considered very good as the vertical resolution of MAPIR is 1 km. In the comparisons against AERONET and CALIOP, a dependence of MAPIR on the quality of the temperature profiles used in the retrieval is observed. Finally, a qualitative comparison of dust aerosol concentration profiles was done against lidar measurements from two ground-based stations (M'Bour and Al Dhaid) and from the Cloud–Aerosol Transport System (CATS) instrument on board the International Space Station (ISS). MAPIR v4.1 showed the ability to detect dust plumes at the same time and with a similar extent as the lidar instruments. This new MAPIR version shows a great improvement of the accuracy of the aerosol profile retrievals with respect to previous versions, especially so for the integrated AOD. It now offers a unique 3-D dust data set, which can be used to gain more insight into the transport and emission processes of mineral dust aerosols.

2019

The comet assay in animal models: From bugs to whales ? (Part 2 Vertebrates)

Gajski, Goran; Žegura, Bojana; Ladeira, Carina; Novak, Matjaž; Srámková, Monika; Pourrut, Bertrand; Del Bo', Cristian; Milić, Mirta; Gutzkow, Kristine Bjerve; Costa, Solange; Dusinska, Maria; Brunborg, Gunnar; Collins, Andrew Richard

Elsevier

2019

Strengthened linkage between midlatitudes and Arctic in boreal winter

Xu, Xinping; He, Shengping; Gao, Yongqi; Furevik, Tore; Wang, Huijun; Li, Fei; Ogawa, Fumiaki

Springer

2019

Publikasjon
År
Kategori