Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 787 publikasjoner. Viser side 5 av 33:

Publikasjon  
År  
Kategori

Linking nanomaterial-induced mitochondrial dysfunction to existing adverse outcome pathways for chemicals

Murugadoss, Sivakumar; Vinković Vrček, Ivana; Schaffert, Alexandra; Paparella, Martin; Pem, Barbara; Sosnowska, Anita; Stępnik, Maciej; Martens, Marvin; Willighagen, Egon L.; Puzyn, Tomasz; Cimpan, Mihaela Roxana; Lemaire, Frauke; Mertens, Birgit; Dusinska, Maria; Fessard, Valérie; Hoet, Peter H.

The adverse outcome pathway (AOP) framework plays a crucial role in the paradigm shift of tox­icity testing towards the development and use of new approach methodologies. AOPs developed for chemicals are in theory applicable to nanomaterials (NMs). However, only initial efforts have been made to integrate information on NM-induced toxicity into existing AOPs. In a previous study, we identified AOPs in the AOP-Wiki associated with the molecular initiating events (MIEs) and key events (KEs) reported for NMs in scientific literature. In a next step, we analyzed these AOPs and found that mitochondrial toxicity plays a significant role in several of them at the molecular and cellular levels. In this study, we aimed to generate hypothesis-based AOPs related to NM-induced mitochondrial toxicity. This was achieved by integrating knowledge on NM-induced mitochondrial toxicity into all existing AOPs in the AOP-Wiki, which already includes mitochondrial toxicity as a MIE/KE. Several AOPs in the AOP-Wiki related to the lung, liver, cardiovascular and nervous system, with extensively defined KEs and key event relationships (KERs), could be utilized to develop AOPs that are relevant for NMs. However, the majority of the studies included in our literature review were of poor quality, particularly in reporting NM physicochemical characteristics, and NM-relevant mitochondrial MIEs were rarely reported. This study highlights the potential role of NM-induced mitochondrial toxicity in human-relevant adverse outcomes and identifies useful AOPs in the AOP-Wiki for the development of AOPs for NMs.

Elsevier

2024

Task Offloading Optimization for UAV-Aided NOMA Networks With Coexistence of Near-Field and Far-Field Communications

Bui, Tinh Thanh; Do, Thinh Quang; Huynh, Dang Van; Do-Duy, Tan; Nguyen, Long D.; Cao, Tuan-Vu; Sharma, Vishal; Duong, Trung Q.

IEEE (Institute of Electrical and Electronics Engineers)

2025

Two-Stage Feature Engineering to Predict Air Pollutants in Urban Areas

Naz, Fareena; Fahim, Muhammad; Cheema, Adnan Ahmad; Nguyen, Trung Viet; Cao, Tuan-Vu; Hunter, Ruth; Duong, Trung Q.

Air pollution is a global challenge to human health and the ecological environment. Identifying the relationship among pollutants, their fundamental sources and detrimental effects on health and mental well-being is critical in order to implement appropriate countermeasures. The way forward to address this issue and assess air quality is through accurate air pollution prediction. Such prediction can subsequently assist governing bodies in making prompt, evidence-based decisions and prevent further harm to our urban environment, public health, and climate, all of which co-benefit our economy. In this study, the main objective is to explore the strength of features and proposed a two stage feature engineering approach, which fuses the advantage of influential factors along with the decomposition approach and generates an optimum feature combination for five major pollutants including Nitrogen Dioxide (NO 2 ), Ozone (O 3 ), Sulphur Dioxide (SO 2 ), and Particulate Matter (PM2.5, and PM10). The experiments are conducted using a dataset from 2015 to 2020 which is publicly available and is collected from Belfast-based air quality monitoring stations in Northern Ireland, UK. In stage-1, using the dataset new features such as trigonometric and statistical features are created to capture their dependency on the target pollutant and generated correlation-inspired best feature combinations to improve forecasting model performance. This is further enhanced in stage-2 by an optimum feature combination which is an integration of stage-1 and Variational Mode Decomposition (VMD) based features. This study employed a simplified Long Short Term Memory (LSTM) neural network and proposed a single-step forecasting model to predict multivariate time series data. Three performance indicators are used to evaluate the effectiveness of forecasting model: (a) root mean square error (RMSE), (b) mean absolute error (MAE), and (c) R-squared (R 2 ). The results demonstrate the effectiveness of proposed approach with 13% improvement in performance (in terms of R 2 ) and the lowest error scores for both RMSE and MAE.

IEEE (Institute of Electrical and Electronics Engineers)

2024

Development of a supramolecular solvent–based extraction method for application to quantitative analyses of a wide range of organic contaminants in indoor dust

Marcinekova, Paula; Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Martinelli, Erika; Jilkova, Simona Rozárka; Martiník, Jakub; Senk, Petr; Kukučka, Petr; Audyc, Ondřej; Kohoutek, Jiří; Ghebremeskel, Mebrat; Håland, Alexander; Borgen, Anders; Eikenes, Heidi; Hanssen, Linda; Harju, Mikael; Cebula, Zofia; Rostkowski, Pawel

This study investigates the efficacy of supramolecular solvent (SUPRAS) in extracting a diverse spectrum of organic contaminants from indoor dust. Initially, seven distinct SUPRAS were assessed across nine categories of contaminants to identify the most effective one. A SUPRAS comprising Milli-Q water, tetrahydrofuran, and hexanol in a 70:20:10 ratio, respectively, demonstrated the best extraction performance and was employed for testing a wider array of organic contaminants. Furthermore, we applied the selected SUPRAS for the extraction of organic compounds from the NIST Standard Reference Material (SRM) 2585. In parallel, we performed the extraction of NIST SRM 2585 with conventional extraction methods using hexane:acetone (1:1) for non-polar contaminants and methanol (100%) extraction for polar contaminants. Analysis from two independent laboratories (in Norway and the Czech Republic) demonstrated the viability of SUPRAS for the simultaneous extraction of twelve groups of organic contaminants with a broad range of physico-chemical properties including plastic additives, pesticides, and combustion by-products. However, caution is advised when employing SUPRAS for highly polar contaminants like current-use pesticides or volatile substances like naphthalene.

Springer

2024

Estimating surface NO2 concentrations over Europe using Sentinel-5P TROPOMI observations and Machine Learning

Shetty, Shobitha; Schneider, Philipp; Stebel, Kerstin; Hamer, Paul David; Kylling, Arve; Berntsen, Terje Koren

Satellite observations from instruments such as the TROPOspheric Monitoring Instrument (TROPOMI) show significant potential for monitoring the spatiotemporal variability of NO2, however they typically provide vertically integrated measurements over the tropospheric column. In this study, we introduce a machine learning approach entitled ‘S-MESH’ (Satellite and ML-based Estimation of Surface air quality at High resolution) that allows for estimating daily surface NO2 concentrations over Europe at 1 km spatial resolution based on eXtreme gradient boost (XGBoost) model using primarily observation-based datasets over the period 2019–2021. Spatiotemporal datasets used by the model include TROPOMI NO2 tropospheric vertical column density, night light radiance from the Visible Infrared Imaging Radiometer Suite (VIIRS), Normalized Difference Vegetation Index from the Moderate Resolution Imaging Spectroradiometer (MODIS), observations of air quality monitoring stations from the European Environment Agency database and

2024

Cost-Efficient measurement platform and machine-learning-based sensor calibration for precise NO2 pollution monitoring

Pietrenko-Dabrowska, Anna; Koziel, Slawomir; Wojcikowski, Marek; Pankiewicz, Bogdan; Rydosz, Artur; Cao, Tuan-Vu; Wojtkiewicz, Krystian

Elsevier

2024

Understanding thermal comfort expectations in older adults: The role of long-term thermal history

Hassani, Amirhossein; Jancewicz, Barbara; Wrotek, Malgorzata; Chwałczyk, Franciszek; Castell, Nuria

Understanding how long-term thermal history affects thermal comfort expectations in older adults (65+) has implications for designing energy-efficient spaces in a changing climate. A growing number of studies focus on thermal sensation/preference votes to represent the current thermal comfort expectations, often overlooking their limitations. This study, however, investigates how factors shaping long-term thermal history link to the current 65+ adults indoor thermal comfort expectations during exposure to heat, by focusing on the upper limit of thermally acceptable temperature range, represented by a self-reported temperature threshold at which 65+ adults believe to feel uncomfortable by indoor heat (Tit). To find Tit, we use answers to “Above what temperature do you start feeling too hot indoors?” by survey respondents in Warsaw (n = 678) and Madrid (n = 527), who lived in their apartment ≥5 years. Statistically, we find indoor factors affecting long-term thermal experiences more significant in explaining 65+ Tit, when compared to outdoor factors such as distance to water, vegetation, or surface thermal radiance. Better-insulated buildings were associated with a lower Tit [...]

Elsevier

2024

Method Development to Assess the Ventilated and Nonventilated Sources of Indoor Dust Deposits, Applied in a Museum

Grøntoft, Terje; Buchwald-Ziecina, Oliwia

A method was developed to analytically distinguish between the ventilated (v) and nonventilated (nv) fractions of water-soluble ions in deposits of particle indoors. The indicative method was based on low-cost passive outdoor and indoor sampling of the particle and ion deposits and NO2 gas and analysis of the regression values and residuals of the correlations between these parameters. The method was applied to measurements in the Pieskowa Skała Castle Museum in Poland. A dominating source of “soil and building dust” was indicated all year round, probably partly from renovation works of the castle, with larger total infiltration in the winter–spring (W-S) but with a higher proportion of ventilation ingress in the summer–autumn (S-A). About 60%–80%, by mass, of the water-soluble ions in the soil and building dust were calcium and probably some magnesium bicarbonate (Ca(HCO3)2, Mg(HCO3)2) and about 10%–20% sulfates (SO4−−) with calcium (Ca++) and several other cations. The other main source of the ion deposits was indicated to be air pollution, with chloride (Cl−), sulfate (SO4−−), and nitrate (NO3−), from outdoor combustion sources, like traffic, residential heating, and industry. These were mainly v from outdoors in the colder parts of the year, but also to the more open locations in the S-A. A small source of nv sulfate (SO4−−) was identified inside two showcases in the S-A. The study showed good enclosure protection of the museum objects against exposure to particle pollution, but also the need to avoid the trapping of particle pollution inside showcases or closed rooms. The identification of the probable different amounts and sources of v and nv ions in the castle aided preventive actions to reduce the pollution exposure.

John Wiley & Sons

2024

The time for ambitious action is now: Science-based recommendations for plastic chemicals to inform an effective global plastic treaty

Brander, Susanne M.; Senathirajah, Kala; Fernandez, Marina; Weis, Judith S.; Kumar, Eva; Jahnke, Annika; Hartmann, Nanna B.; Alava, Juan José; Farrelly, Trisia; Almroth, Bethanie Carney; Groh, Ksenia J.; Syberg, Kristian; Buerkert, Johanna Sophie; Abeynayaka, Amila; Booth, Andy; Cousin, Xavier; Herzke, Dorte; Monclús , Laura; Morales-Caselles, Carmen; Bonisoli-Alquati, Andrea; Al-jaibachi, Rana; Wagner, Martin

The ubiquitous and global ecological footprint arising from the rapidly increasing rates of plastic production, use, and release into the environment is an important modern environmental issue. Of increasing concern are the risks associated with at least 16,000 chemicals present in plastics, some of which are known to be toxic, and which may leach out both during use and once exposed to environmental conditions, leading to environmental and human exposure. In response, the United Nations member states agreed to establish an international legally binding instrument on plastic pollution, the global plastics treaty. The resolution acknowledges that the treaty should prevent plastic pollution and its related impacts, that effective prevention requires consideration of the transboundary nature of plastic production, use and pollution, and that the full life cycle of plastics must be addressed. As a group of scientific experts and members of the Scientists' Coalition for an Effective Plastics Treaty, we concur that there are six essential “pillars” necessary to truly reduce plastic pollution and allow for chemical detoxification across the full life cycle of plastics. These include a plastic chemical reduction and simplification, safe and sustainable design of plastic chemicals, incentives for change, holistic approaches for alternatives, just transition and equitable interventions, and centering human rights. There is a critical need for scientifically informed and globally harmonized information, transparency, and traceability criteria to protect the environment and public health. The right to a clean, healthy, and sustainable environment must be upheld, and thus it is crucial that scientists, industry, and policy makers work in concert to create a future free from hazardous plastic contamination.

Elsevier

2024

Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe

Ge, Yao; Solberg, Sverre; Heal, Mathew R; Reimann, Stefan; van Caspel, Willem; Hellack, Bryan; Salameh, Therese; Simpson, David

Atmospheric volatile organic compounds (VOCs) constitute a wide range of species, acting as precursors to ozone and aerosol formation. Atmospheric chemistry and transport models (CTMs) are crucial to understanding the emissions, distribution, and impacts of VOCs. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West (EMEP MSC-W) CTM to evaluate emission inventories in Europe. Here we undertake the first intensive model–measurement comparison of VOCs in 2 decades. The modelled surface concentrations are evaluated both spatially and temporally, using measurements from the regular EMEP monitoring network in 2018 and 2019, as well as a 2022 campaign. To achieve this, we utilised the UK National Atmospheric Emissions Inventory to derive explicit emission profiles for individual species and employed a tracer method to produce pure concentrations that are directly comparable to observations.

The degree to which the modelled and measured VOCs agree varies depending on the specific species. The model successfully captures the overall spatial and temporal variations of major alkanes (e.g. ethane, n-butane) and unsaturated species (e.g. ethene, benzene) but less so for propane, i-butane, and ethyne. This discrepancy underscores potential issues in the boundary conditions for the latter species and in their primary emissions from, in particular, the solvent and road transport sectors. Specifically, potential missing propane emissions and issues with its boundary conditions are highlighted by large model underestimations and smaller propane-to-ethane ratios compared to the measurement. Meanwhile, both the model and measurements show strong linear correlations among butane isomers and among pentane isomers, indicating common sources for these pairs of isomers. However, modelled ratios of i-butane to n-butane and i-pentane to n-pentane are approximately one-third of the measured ratios, which is largely driven by significant emissions of n-butane and n-pentane from the solvent sector. This suggests issues with the speciation profile of the solvent sector, underrepresented contributions from transport and fuel evaporation sectors in current inventories, or both. Furthermore, the modelled ethene-to-ethyne and benzene-to-ethyne ratios differ significantly from measured ratios. The different model performance strongly points to shortcomings in the spatial and temporal patterns and magnitudes of ethyne emissions, especially during winter. For OVOCs, the modelled and measured concentrations of methanal and methylglyoxal show a good agreement, despite a moderate underestimation by the model in summer. This discrepancy could be attributed to an underestimation of contributions from biogenic sources or possibly a model overestimation of their photolytic loss in summer. However, the insufficiency of suitable measurements limits the evaluation of other OVOCs. Finally, model simulations employing the CAMS inventory show slightly better agreements with measurements than those using the Centre on Emission Inventories and Projections (CEIP) inventory. This enhancement is likely due to the CAMS inventory's detailed segmentation of the road transport sector, including its associated sub-sector-specific emission profiles. Given this improvement, alongside the previously mentioned concerns about the model's biased estimations of various VOC ratios, future efforts should focus on a more detailed breakdown of dominant emission sectors (e.g. solvents) and the refinement of their speciation profiles to improve model accuracy.

2024

Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS): The European Research Infrastructure Supporting Atmospheric Science

Laj, Paolo; Myhre, Cathrine Lund; Riffault, Véronique; Amiridis, Vassilis; Fuchs, Hendrik; Eleftheriadis, Konstantinos; Petäjä, Tuukka; Salameh, Therese; Kivekäs, Niku; Juurola, Eija; Saponaro, Giulia; Philippin, Sabine; Cornacchia, Carmela; Arboledas, Lucas Alados; Baars, Holger; Claude, Anja; De Mazière, Martine; Dils, Bart; Dufresne, Marvin; Evangeliou, Nikolaos; Favez, Olivier; Fiebig, Markus; Haeffelin, Martial; Herrmann, Hartmut; Höhler, Kristina; Illmann, Niklas; Kreuter, Axel; Ludewig, Elke; Marinou, Eleni; Möhler, Ottmar; Mona, Lucia; Murberg, Lise Eder; Nicolae, Doina; Novelli, Anna; O'Connor, Ewan; Ohneiser, Kevin; Altieri, Rosa Maria Petracca; Picquet-Varrault, Benedicte; van Pinxteren, Dominik; Pospichal, Bernhard; Putaud, Jean-Philippe; Reimann, Stefan; Siomos, Nikolaos; Stachlewska, Iwona S.; Tillmann, Ralf; Voudouri, Kalliopi Artemis; Wandinger, Ulla; Wiedensohler, Alfred; Apituley, Arnoud; Comerón, Adolfo; Gysel-Beer, Martin; Mihalopoulos, Nikolaos; Nikolova, Nina; Pietruczuk, Aleksander; Sauvage, Stéphane; Sciare, Jean; Skov, Henrik; Svendby, Tove Marit; Swietlicki, Erik; Tonev, Dimitar; Vaughan, Geraint; Zdimal, Vladimir; Baltensperger, Urs; Doussin, Jean-François; Kulmala, Markku; Pappalardo, Gelsomina; Sundet, Sanna Sorvari; Vana, Milan

The Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) officially became the 33rd European Research Infrastructure Consortium (ERIC) on April 25, 2023 with the support of 17 founding member and observer countries. As a pan-European legal organization, ACTRIS ERIC will coordinate the provision of data and data products on short-lived atmospheric constituents and clouds relevant to climate and air pollution over the next 15-20 years. ACTRIS was designed more than a decade ago, and its development was funded at national and European levels. It was included in the European Strategy Forum on Research Infrastructures (ESFRI) Roadmap in 2016 and subsequently, in the national infrastructure roadmaps of European countries. It became a landmark of the ESFRI roadmap in 2021. The purpose of this paper is to describe the mission of ACTRIS, its added value to the community of atmospheric scientists, providing services to academia as well as the public and private sectors, and to summarize its main achievements. The present publication serves as a reference document for ACTRIS, its users and the scientific community as a whole. It provides the reader with relevant information and an overview on ACTRIS governance and services, as well as a summary of the main scientific achievements of the last 20 years. The paper concludes with an outlook on the upcoming challenges for ACTRIS and the strategy for its future evolution.

American Meteorological Society

2024

Testing ethical impact assessment for nano risk governance

Malsch, Ineke; Isigonis, Panagiotis; Bouman, Evert Alwin; Afantitis, Antreas; Melagraki, Georgia; Dusinska, Maria

Risk governance of nanomaterials and nanotechnologies has been traditionally mainly limited to risk assessment, risk management and life cycle assessment. Recent approaches have experimented with widening the scope and including economic, social, and ethical aspects. This paper reports on tests and stakeholder feedback on fine-tuning the use of ethical impact assessment guidelines (RiskGONE D3.6) and online tools adapting the CEN Workshop Agreement part 2 CWA 17145-2:2017 (E)) to support risk governance of nanomaterials, in the RiskGONE project. The EIA guidelines and tools are intended to be used as one module in a multicriteria decision support framework for risk governance of nanomaterials, but may also be used for a stand-alone ethical impact assessment.

Nanomaterials are new forms of materials with structures at sizes between 1 and 100 nanometres (a millionth of a millimetre). They can be particles, tubes, platelets or other shaped structures. Nanomaterials can be applied in many different products, ranging from medicine to solar panels. Researchers, governments and stakeholders have been concerned with potential risks for human health and the environment for decades. Also, how nanomaterials behave during the production, use and waste processing of the products they are included in has been investigated in Life Cycle Analysis. However, ethical issues which may be raised by the use of nanomaterials in those products are usually not investigated. In this article, the procedure for an ethical impact assessment described in the CEN Workshop Agreement CWA 17145-@:2017 (E) is adapted to nanomaterials. Users who want to perform this assessment are guided through the procedure by online tools. The guidelines and tools were tested on several case studies and discussed with stakeholders, who commented on the criteria which should be used and on who could use the tools. This results in recommendations for improving the guidelines and online tools.

2024

Beyond target chemicals: updating the NORMAN prioritisation scheme to support the EU chemicals strategy with semi-quantitative suspect/non-target screening data

Dulio, Valeria; Alygizakis, Nikiforos; Ng, Kelsey; Schymanski, Emma L.; Andres, Sandrine; Vorkamp, Katrin; Hollender, Juliane; Finckh, Saskia; Aalizadeh, Reza; Ahrens, Lutz; Bouhoulle, Elodie; Čirka, Ľuboš; Derksen, Anja; Deviller, Genevieve; Duffek, Anja; Esperanza, Mar; Fischer, Stellan; Fu, Qiuguo; Gago-Ferrero, Pablo; Haglund, Peter; Junghans, Marion; Kools, Stefan A. E.; Koschorreck, Jan; Lopez, Benjamin; de Alda, Miren Lopez; Mascolo, Giuseppe; Miège, Cécile; Oste, Leonard; O'Toole, Simon; Rostkowski, Pawel; Schulze, Tobias; Sims, Kerry; Six, Laetitia; Slobodnik, Jaroslav; Staub, Pierre-François; Stroomberg, Gerard; Thomaidis, Nikolaos S.; Togola, Anne; Tomasi, Giorgio; von der Ohe, Peter C.

Background

Prioritisation of chemical pollutants is a major challenge for environmental managers and decision-makers alike, which is essential to help focus the limited resources available for monitoring and mitigation actions on the most relevant chemicals. This study extends the original NORMAN prioritisation scheme beyond target chemicals, presenting the integration of semi-quantitative data from retrospective suspect screening and expansion of existing exposure and risk indicators. The scheme utilises data retrieved automatically from the NORMAN Database System (NDS), including candidate substances for prioritisation, target and suspect screening data, ecotoxicological effect data, physico-chemical data and other properties. Two complementary workflows using target and suspect screening monitoring data are applied to first group the substances into six action categories and then rank the substances using exposure, hazard and risk indicators. The results from the ‘target’ and ‘suspect screening’ workflows can then be combined as multiple lines of evidence to support decision-making on regulatory and research actions.

Results

As a proof-of-concept, the new scheme was applied to a combined dataset of target and suspect screening data. To this end, > 65,000 substances on the NDS, of which 2579 substances supported by target wastewater monitoring data, were retrospectively screened in 84 effluent wastewater samples, totalling > 11 million data points. The final prioritisation results identified 677 substances as high priority for further actions, 7455 as medium priority and 326 with potentially lower priority for actions. Among the remaining substances, ca. 37,000 substances should be considered of medium priority with uncertainty, while it was not possible to conclude for 19,000 substances due to insufficient information from target monitoring and uncertainty in the identification from suspect screening. A high degree of agreement was observed between the categories assigned via target analysis and suspect screening-based prioritisation. Suspect screening was a valuable complementary approach to target analysis, helping to prioritise thousands of substances that are insufficiently investigated in current monitoring programmes.

Conclusions

This updated prioritisation workflow responds to the increasing use of suspect screening techniques. It can be adapted to different environmental compartments and can support regulatory obligations, including the identification of specific pollutants in river basins and the marine environments, as well as the confirmation of environmental occurrence levels predicted by modelling tools.

Springer

2024

Environmental dose-response functions of silk and paper exposed in museums.

Grøntoft, Terje; Hallett, Kathryn; Blades, Nigel

This paper reports 1 year of data of the environments and changes in the molecular weight of silk and the degree of polymerization of sensitive paper measured externally and indoors in 10 European museums, and the dose-response functions that were obtained by statistical analysis of this data. The measurements were performed in the EU FP5 project Master (EVK-CT-2002-00093). The work provides documentation of deterioration of silk by NO2 and O3, and alternatively in combination with UV radiation. The indoor deterioration of the silk was only observed in one location with high UV radiation. The indoor deterioration of sensitive paper correlated with the UV radiation, the concentrations of NO2 and O3, and in addition with an SO2 concentration of 4 µgm−3 and a formic acid concentration of 50 µgm−3 in two different locations. If the observed dose-response effects are linear to lower doses and longer exposure times, then the lifetime to intolerable deterioration of the paper and silk would be 6–7 times longer overall in the enclosures than in the galleries.

2024

Revisiting the strategy for marine litter monitoring within the european marine strategy framework directive (MSFD)

Galgani, François; Lusher, Amy L; Strand, Jakob; Larsen Haarr, Marthe; Vinci, Matteo; Molina Jack, Maria Eugenia; Kagi, Ralf; Aliani, Stefano; Herzke, Dorte; Nikiforov, Vladimir; Primpke, Sebastian; Schmidt, Natascha; Fabres, Joan; De Witte, Bavo P.; Solbakken, Vilde Sørnes; van Bavel, Bert

Marine litter and non-degradable plastic pollution is of global concern. Regular monitoring programs are being established to assess and understand the scale of this pollution. In Europe, the goal of the European Marine Strategy Framework Directive (MSFD) is to assess trends in Good Environmental Status and support large-scale actions at the regional level. Marine litter monitoring requires tailored sampling strategies, protocols and indicators, that align with specific objectives and are tailored for local or regional needs. In addition, the uneven spatial and temporal distributions of marine litter present a challenge when designing a statistically powerful monitoring program. In this paper, we critically review the existing marine litter monitoring programs in Europe. We discuss the main constraints, including environmental, logistical, scientific, and ethical factors. Additionally, we outline the critical gaps and shortcomings in monitoring MSFD beaches/shorelines, floating litter, seafloor litter, microplastics, and harm. Several priorities must be established to shape the future of monitoring within the MSFD. Recent developments in analytical approaches, including optimizing protocols and sampling strategies, gaining a better understanding of the spatiotemporal heterogeneity of litter and its implications for survey design and replication, and the inclusion of newly validated methodologies that have achieved sufficient technical readiness, must be considered. Although there are well-established methods for assessing beaches, floating and seafloor litter, it will be necessary to implement monitoring schemes for microplastics in sediments and invertebrates as robust analytical methods become available for targeting smaller particle size classes. Furthermore, the inclusion of indicators for entanglement and injury to marine organisms will have to be considered in the near future. Moreover, the following actions will enhance the effectiveness of monitoring efforts: (1) creating an inventory of accumulation areas and sources of specific types of litter (e.g., fishing gear), (2) monitoring riverine inputs of litter, (3) monitoring atmospheric inputs including microplastics, (4) accidental inputs during extreme weather events, and (5) studying how species at risk may be transported by litter. We provide recommendations to support long-term, effective, and well-coordinated marine litter monitoring within the MSFD to achieve a comprehensive and accurate understanding of marine litter in EU waters. This will allow the development of measures to mitigate the impacts of marine pollution and eventually to evaluate the success of the respective measures.

Elsevier

2024

Governance of advanced materials: Shaping a safe and sustainable future

Groenewold, Monique; Bleeker, Eric A.J.; Noorlander, Cornelle W.; Sips, Adriënne J.A.M.; van der Zee, Margriet; Aitken, Robert J.; Baker, James H.; Bakker, Martine I.; Bouman, Evert; Doak, Shareen H.; Drobne, Damjana; Dumit, Verónica I.; Florin, Marie-Valentine; Fransman, Wouter; Gonzalez, Mar M.; Heunisch, Elisabeth; Isigonis, Panagiotis; Jeliazkova, Nina; Jensen, Keld Alstrup; Kuhlbusch, Thomas; Lynch, Iseult; Morrison, Mark; Porcari, Andrea; Rodríguez-Llopis, Isabel; Pozuelo, Blanca M.; Resch, Susanne; Säämänen, Arto J.; Serchi, Tommaso; Soeteman-Hernandez, Lya G.; Willighagen, Egon; Dusinska, Maria; Scott-Fordsmand, Janeck J.

Elsevier

2024

Surface-Bioengineered Extracellular Vesicles Seeking Molecular Biotargets in Lung Cancer Cells

Kowalczyk, Agata; Dziubak, Damian; Kasprzak, Artur; Sobczak, Kamil; Ruzycka-Ayoush, Monika; Bamburowicz-Klimkows, Magdalena; Sęk, Sławomir; Rios Mondragon, Ivan; Żołek, Teresa; Rundén-Pran, Elise; Shaposhnikov, Sergey; Cimpan, Mihaela Roxana; Dusinska, Maria; Grudzinski, Ireneusz P.; Nowicka, Anna M.

Personalized medicine is a new approach to modern oncology. Here, to facilitate the application of extracellular vesicles (EVs) derived from lung cancer cells as potent advanced therapy medicinal products in lung cancer, the EV membrane was functionalized with a specific ligand for targeting purposes. In this role, the most effective heptapeptide in binding to lung cancer cells (PTHTRWA) was used. The functionalization process of EV surface was performed through the C- or N-terminal end of the heptapeptide. To prove the activity of the EVs functionalized with PTHTRWA, both a model of lipid membrane mimicking normal and cancerous cell membranes as well as human adenocarcinomic alveolar basal epithelial cells (A549) and human normal bronchial epithelial cells (BEAS-2B) have been exposed to these bioconstructs. Magnetic resonance imaging (MRI) showed that the as-bioengineered PTHTRWA-EVs loaded with superparamagnetic iron oxide nanoparticle (SPIO) cargos reach the growing tumor when dosed intravenously in NUDE Balb/c mice bearing A549 cancer. Molecular dynamics (MD) in silico studies elucidated a high affinity of the synthesized peptide to the α5β1 integrin. Preclinical safety assays did not evidence any cytotoxic or genotoxic effects of the PTHTRWA-bioengineered EVs.

American Chemical Society (ACS)

2024

Stepping-up accurate quantification of chlorinated paraffins: Successful certification of the first matrix reference material

Ricci, Marina; de Boer, Jacob; Johansen, Jon Eigill; Huiling, Liu; Dumas, Pierre; Warner, Nicholas Alexander; Pērkons, Ingus; McGrath, Thomas Jacob; Borgen, Anders; Bjørneby, Stine Marie; Tomasko, Jakub; Steer, Helena; Lentjes, Anouk; van Velzen, Martin; van Mourik, Louise

Background
Chlorinated paraffins (CPs) are industrial chemicals categorised as persistent organic pollutants because of their toxicity, persistency and tendency to long-range transport, bioaccumulation and biomagnification. Despite having been the subject of environmental attention for decades, analytical methods for CPs still struggle reaching a sufficient degree of accuracy. Among the issues negatively impacting the quantification of CPs, the unavailability of well-characterised standards, both as pure substances and as matrix (certified) reference materials (CRMs), has played a major role. The focus of this study was to provide a matrix CRM as quality control tool to improve the comparability of CPs measurement results.

Results
We present the process of certification of ERM®-CE100, the first fish reference material assigned with certified values for the mass fraction of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively). The certification was performed in accordance with ISO 17034:2016 and ISO Guide 35:2017, with the value assignment step carried out via an intercomparison of laboratories of demonstrated competence in CPs analysis and applying procedures based on different analytical principles. After confirmation of the homogeneity and stability of the CRM, two certified values were assigned for SCCPs, depending on the calibrants used: 31 ± 9 μg kg−1 and 23 ± 7 μg kg−1. The MCCPs certified value was established as 44 ± 17 μg kg−1. All assigned values are relative to wet weight in the CRM that was produced as a fish paste to enhance similarity to routine biota samples.

Significance and novelty
The fish tissue ERM-CE100 is the first matrix CRM commercially available for the analysis of CPs, enabling analytical laboratories to improve the accuracy and the metrological traceability of their measurements. The certified CPs values are based on results obtained by both gas and liquid chromatography coupled with various mass spectrometric techniques, offering thus a broad validity to laboratories employing different analytical methods and equipment.

Elsevier

2024

Dechloranes and chlorinated paraffins in sediments and biota of two subarctic lakes

Arriola, Aline; Al Saify, Insam; Warner, Nicholas Alexander; Herzke, Dorte; Harju, Mikael; Amundsen, Per-Arne; Evenset, Anita; Möckel, Claudia; Krogseth, Ingjerd Sunde

Our understanding of the environmental behavior, bioaccumulation and concentrations of chlorinated paraffins (CPs) and Dechloranes (Dec) in the Arctic environment is still limited, particularly in freshwater ecosystems. In this descriptive study, short chain (SCCPs) and medium chain (MCCPs) CPs, Dechlorane Plus (DP) and analogues, and polychlorinated biphenyls (PCBs) were measured in sediments, benthic organisms, three-spined stickleback (Gasterosteus aculeatus), Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in two Sub-Arctic lakes in Northern Norway. Takvannet (TA) is a remote lake, with no known local sources for organic contaminants, while Storvannet (ST) is situated in a populated area. SCCPs and MCCPs were detected in all sediment samples from ST with concentration of 42.26–115.29 ng/g dw and 66.18–136.69 ng/g dw for SCCPs and MCCPs, respectively. Only SCCPs were detected in TA sediments (0.4–5.28 ng/g dw). In biota samples, sticklebacks and benthic organisms showed the highest concentrations of CPs, while concentrations were low or below detection limits in both char and trout. The congener group patterns observed in both lakes showed SCCP profiles dominated by higher chlorinated congener groups while the MCCPs showed consistency in their profiles, with C14 being the most prevalent carbon chain length. Anti- and syn-DP isomers were detected in all sediment, benthic and stickleback samples with higher concentrations in ST than in TA. However, they were only present in a few char and trout samples from ST. Dec 601 and 604 were below detection limits in all samples in both lakes. Dec 603 was detected only in ST sediments, sticklebacks and 2 trout samples, while Dec 602 was the only DP analogue found in all samples from both lakes. While there were clear differences in sediment concentrations of DP and Dec 602 between ST and TA, differences between lakes decreased with increasing δ15N. This pattern was similar to the PCB behavior, suggesting the lake characteristics in ST are playing an important role in the lack of biomagnification of pollutants in this lake. Our results suggest that ST receives pollutants from local sources in addition to atmospheric transport.

Frontiers Media S.A.

2024

Forecasting the Exceedances of PM2.5 in an Urban Area

Logothetis, Stavros-Andreas; Kosmopoulos, Georgios; Panagopoulos, Orestis; Salamalikis, Vasileios; Kazantzidis, Andreas

Particular matter (PM) constitutes one of the major air pollutants. Human exposure to fine PM (PM with a median diameter less than or equal to 2.5 μm, PM2.5) has many negative and diverse outcomes for human health, such as respiratory mortality, lung cancer, etc. Accurate air-quality forecasting on a regional scale enables local agencies to design and apply appropriate policies (e.g., meet specific emissions limitations) to tackle the problem of air pollution. Under this framework, low-cost sensors have recently emerged as a valuable tool, facilitating the spatiotemporal monitoring of air pollution on a local scale. In this study, we present a deep learning approach (long short-term memory, LSTM) to forecast the intra-day air pollution exceedances across urban and suburban areas. The PM2.5 data used in this study were collected from 12 well-calibrated low-cost sensors (Purple Air) located in the greater area of the Municipality of Thermi in Thessaloniki, Greece. The LSTM-based methodology implements PM2.5 data as well as auxiliary data, meteorological variables from the Copernicus Atmosphere Monitoring Service (CAMS), which is operated by ECMWF, and time variables related to local emissions to enhance the air pollution forecasting performance. The accuracy of the model forecasts reported adequate results, revealing a correlation coefficient between the measured PM2.5 and the LSTM forecast data ranging between 0.67 and 0.94 for all time horizons, with a decreasing trend as the time horizon increases. Regarding air pollution exceedances, the LSTM forecasting system can correctly capture more than 70.0% of the air pollution exceedance events in the study region. The latter findings highlight the model’s capabilities to correctly detect possible WHO threshold exceedances and provide valuable information regarding local air quality.

MDPI

2024

Energetic particle precipitation influences global secondary ozone distribution

Jia, Jia; Murberg, Lise Eder; Løvset, Tiril; Orsolini, Yvan; Espy, Patrick Joseph; Zeller, Lilou C. G.; Salinas, Cornelius Csar Jude H.; Lee, Jae N.; Wu, Dong; Zhang, Jiarong

The secondary ozone layer is a global peak in ozone abundance in the upper mesosphere-lower thermosphere (UMLT) around 90-95 km. The effect of energetic particle precipitation (EPP) from geomagnetic processes on this UMLT ozone remains largely unexplored. In this research we investigated how the secondary ozone responds to EPP using satellite observations. In addition, the residual Mean Meridional Circulation (MMC) derived from model simulations and the atomic oxygen [O], atomic hydrogen [H], temperature measurements from satellite observations were used to characterise the residual circulation changes during EPP events. We report regions of secondary ozone enhancement or deficit across low, mid and high latitudes as a result of global circulation and transport changes induced by EPP. The results are supported by a sensitivity test using an empirical model.

Springer Nature

2024

Limits to graphite supply in a transition to a post-fossil society

Barre, Francis Isidore; Billy, Romain Guillaume; Aguilar Lopez, Fernando; Mueller, Daniel Beat

Transitioning to electric vehicles (EVs) powered by lithium-ion batteries (LIBs) aims at reducing emissions in the transportation sector, thereby decreasing fuel oil use and crude oil extraction. Yet, synthetic graphite, a crucial anode material for LIBs, is produced from needle coke, a byproduct of oil refining. This dependency could lead to bottlenecks in battery anode production. We found no obvious supply constraints for synthetic graphite in slow electrification scenarios based on different International Energy Agency scenarios. In contrast, net zero scenarios reveal drastic limitations in synthetic graphite supply, due to fast electrification and declining needle coke production. Natural graphite can mitigate supply limitations but faces environmental concerns, long development time and geopolitical concerns. Securing graphite supply while reaching the net zero goals requires comprehensive strategies combining (1) systematic graphite recycling, (2) overcoming current technical challenges, and (3) behavioral shifts towards reduced vehicle ownership and smaller vehicles.

Elsevier

2024

The Troll Observing Network (TONe): plugging observation holes in Dronning Maud Land, Antarctica

Pedersen, Christina Alsvik; Njåstad, Birgit; Aas, Wenche; Darelius, Elin Maria K.; Descamps, Sebastien; Flått, Stig; Hattermann, Tore; Hudson, Stephen; Miloch, Wojciech Jacek; Rykkje, Simen; Schweitzer, Johannes; Storvold, Rune; Tronstad, Stein

Understanding how Antarctica is changing and how these changes influence the rest of the Earth is fundamental to the future robustness of human society. Strengthening our understanding of these changes and their implications requires dedicated, sustained and coordinated observations of key Antarctic indicators. The Troll Observing Network (TONe), now under development, is Norway’s contribution to the global need for sustained, coordinated, complementary and societally relevant observations from Antarctica. When fully implemented within the coming three years, TONe will be a state-of-the-art, multi-platform, multi-disciplinary observing network in data-sparse Dronning Maud Land. A critical part of the network is a data management system that will ensure broad, free access to all TONe data to the international research community.

2024

Publikasjon
År
Kategori