Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 404 publikasjoner. Viser side 7 av 17:

Publikasjon  
År  
Kategori

VOC measurements 2020

Solberg, Sverre; Claude, Anja; Reimann, Stefan; Sauvage, Stéphane; Walker, Sam-Erik

NILU

2022

Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2021. Annual report.

Myhre, Cathrine Lund; Svendby, Tove Marit; Hermansen, Ove; Lunder, Chris Rene; Platt, Stephen Matthew; Fiebig, Markus; Fjæraa, Ann Mari; Hansen, Georg H.; Schmidbauer, Norbert; Stebel, Kerstin

This annual report for 2021 summarizes the activities and results of the greenhouse gas monitoring at the Zeppelin Observatory, situated on Svalbard, during the period 2001-2021, and the greenhouse gas monitoring and aerosol observations from Birkenes for 2009-2021.

NILU

2022

Monitoring of long-range transported air pollutants in Norway. Annual Report 2021.

Aas, Wenche; Berglen, Tore Flatlandsmo; Eckhardt, Sabine; Fiebig, Markus; Solberg, Sverre; Yttri, Karl Espen

This report presents results from the monitoring of atmospheric composition and deposition of air pollution in 2021, and focuses on main components in air and precipitation, particulate and gaseous phase of inorganic constituents, particulate carbonaceous matter, ground level ozone and particulate matter. The level of pollution in 2021 was generally low with few high episodes.

NILU

2022

Heavy metals and POP measurements, 2020

Aas, Wenche; Bohlin-Nizzetto, Pernilla

NILU

2022

Monitoring of environmental contaminants in air and precipitation. Annual report 2021.

Bohlin-Nizzetto, Pernilla; Aas, Wenche; Halvorsen, Helene Lunder; Nikiforov, Vladimir; Pfaffhuber, Katrine Aspmo

This report presents data from 2021 and time-trends for the Norwegian monitoring programme "Atmospheric contaminants". The results cover 200 organic compounds (regulated and non-regulated), 11 heavy metals, and a selection of organic chemicals of concern.

NILU

2022

Ozone measurements 2020

Hjellbrekke, Anne-Gunn; Solberg, Sverre

NILU

2022

Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components

Fagerli, Hilde; Benedictow, Anna Maria Katarina; Denby, Bruce; Gauss, Michael; Heinesen, Daniel; Jonson, Jan Eiof; Karlsen, Krister Stræte; Klein, Heiko; Mortier, Augustin; Nyiri, Agnes; Segers, Arjo; Simpson, David; Tsyro, Svetlana; Valdebenito Bustamante, Alvaro Moises; Wind, Peter; Aas, Wenche; Hjellbrekke, Anne-Gunn; Solberg, Sverre; Platt, Stephen Matthew; Tørseth, Kjetil; Yttri, Karl Espen; Matthews, Bradley; Schindlbacher, Sabine; Ullrich, Bernhard; Wankmüller, Robert; Klimont, Zbigniew; Scheuschner, Thomas; Fernandez, Ignacio A. Gonzalez; Kuenen, Jeroen

Norwegian Meteorological Institute

2022

National Mercury Assessment – An Evaluation of the Effectiveness of Norwegian Mercury Regulations and Policies

Braaten, Hans Fredrik Veiteberg; Pfaffhuber, Katrine Aspmo; Routti, Heli Anna Irmeli; Knutsen, Helle Katrine; Bank, Michael; Travnikov, Oleg; Enge, Caroline; Gundersen, Cathrine Brecke; Eckhardt, Sabine; Tørseth, Kjetil; Vejrup, Kristine; Brantsæter, Anne Lise

The National Mercury (Hg) Assessment in Norway evaluates the connections among: (a) national, regional and global Hg policies and regulations, (b) emissions, releases, uses and exposure pathways of Hg, and (c) concentrations of Hg in the environment, biota, and humans, measured during 2000-2020. Our findings suggest that the key changes of Hg in humans and the environment are highly dependent on the quality of the datasets, yet connections both to national and regional sources, as well as climate related drivers could be made for some data sets.

Norwegian Environment Agency

2022

Norges målenettverk for luftkvalitet. Gjennomgang av stasjonsplasseringer i forhold til krav i EUs luftkvalitetsdirektiver.

Hak, Claudia

Rapporten gir en oversikt over Norges luftkvalitetsmålenettverk. Alle målestasjoner som rapporterer måledata til EEA/ESA er beskrevet og plasseringen er vurdert i forhold til krav i EUs direktiver.
Omgivelsene til stasjonene er beskrevet og viktige kilder til utslipp er identifisert. Plasseringen av målestasjonene er dokumentert med kart og flybilde og retningsvisende fotografier av området.
Avvik fra plasseringskriteriene er dokumentert. Anbefalinger for justeringer er gitt for enkelte stasjoner.

NILU

2022

European-wide city level air quality mapping. Evaluation of the current mapping methodology with respect to the level of cities and NUTS3 units and suggestions for future.

Horálek, Jan; Schneider, Philipp; Schreiberova, Marketa; Kurfürst, Pavel; Malherbe, Laure

The report evaluates current mapping methodology with respect to city- and NUTS3-levels mapping across Europe. It states that the current mapping can be used at the city and the NUTS3 levels, despite a mild smoothing effect at locations of the measurement stations. However, it suggests a post-processing correction based on the mapping residuals.

A potential new approach for the city ranking have been examined, namely the population-weighted concentration based on the mapping results. While the averaged measurement data from the background stations (as used in the current city ranking) provides a superior information for the whole city in general, the population-weighted concentration also well represents the whole city and gives a consistent information for all cities, including those without station measurements.

Next to this, alternative treatments of rural and urban stations has been evaluated. If the urban traffic areas should be better represented in the final maps, an increased map resolution is recommended.

Several possibilities of future development towards the European-wide city level mapping in a fine resolution have been suggested, namely exploitation of a high-resolution model output in the existing methodology, geostatistical downscaling of the existing spatial maps using fine-resolution proxy datasets and exploitation of existing low-cost sensor networks.

ETC/ATNI

2021

European air quality maps for 2019. PM10, PM2.5, Ozone, NO2 and NOx Spatial estimates and their uncertainties

Horálek, Jan; Vlasakova, Leona; Schreiberova, Marketa; Markova, Jana; Schneider, Philipp; Kurfürst, Pavel; Tognet, Frédéric; Schovánková, Jana; Vlcek, Ondrej

The report provides the annual update of the European air quality concentration maps and population exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, SOMO35, SOMO10) and NO2 (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2019. The report contains also Phytotoxic ozone dose (POD) for wheat, potato and tomato maps and NOx annual average map for 2019. The POD map for tomato is presented for the first time in this regular mapping report. The trends in exposure estimates in the period 2005–2019 are summarized. The analysis is based on the interpolation of the annual statistics of the 2019 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database. The mapping method is the Regression – Interpolation – Merging Mapping (RIMM). It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps. It also presents concentration change in 2019 in comparison to the five-year average 2014-2018 using the difference maps.

ETC/ATNI

2021

Air quality evolution and trends in Europe in 2005-2019 based on spatial maps. Trend analysis and population exposure using reconstructed consistent data fusion maps for PM10, ozone and NO2

Horálek, Jan; Schreiberova, Marketa; Volná, Vladimíra; Colette, Augustin; Schovánková, Jana; Vlasakova, Leona; Markova, Jana; Schneider, Philipp

This report analyses evolution and trends of air quality in Europe, based on a 15-year time series of spatial data fusion maps for the years 2005-2019. The analysis has been performed for PM10 annual average, the ozone indicator SOMO35 and NO2 annual average. For the purpose of the Eionet Report - ETC/ATNI 2021/11 trend analysis, a consistent reconstruction of the full 15-year time series of air quality maps has been performed, based on a consistent mapping methodology and input data. For the reconstruction, the Regression – Interpolation – Merging Mapping (RIMM) methodology as routinely used in the regular European-wide annual mapping has been applied.

The trend analysis has been performed based on time series of the aggregated data for individual countries, for large European regions and for the entire mapping area, both for spatial and population-weighted aggregations. In addition, maps of trends have been constructed based on the trend estimates for all grid cells of a map.

For the European-wide aggregations across the whole mapping area, statistically significant downward trend have been estimated for PM10 and NO2, while no significant trend was detected in the case of ozone.

ETC/ATNI

2021

Interim European air quality maps for 2020. PM10, NO2 and ozone spatial estimates based on non-validated UTD data.

Horálek, Jan; Schreiberova, Marketa; Vlasakova, Leona; Hamer, Paul David; Schneider, Philipp; Markova, Jana

The report provides interim 2020 maps for PM10 annual average, NO2 annual average and the ozone indicator SOMO35. The maps have been produced based on non-validated Up-To-Date data reported to the AQ e-reporting database (data flow E2a), the CAMS Ensemble Forecast modelling data and other supplementary data including air quality data reported to EMEP. In addition to concentration maps, the inter-annual differences between the years 2019 and 2020 are presented (using the 2019 regular and the 2020 interim maps), as well as European exposure estimates based on the interim maps. The contribution of lockdown measures connected with the Covid-19 pandemic on the change of air pollutant concentrations during the exceptional year 2020 is briefly discussed. The decrease in road transport, aviation and international shipping intensity during the lockdown resulted in a reduction of the NOx emission, mainly in large cities and urbanized areas. Compared to 2019, a general decrease in NO2 annual average concentrations is shown for 2020, as well as a decrease in values of the ozone indicator SOMO35, apart from areas with a steep NO2 decrease. Due to the chemical processes, the decrease in NOX resulted in an ozone increase in these areas. The contribution of lockdown measures on the change of PM10 concentrations is quite complex. On the one hand, there was a decrease in emissions of suspended particles and their precursors due to decrease in transport. On the other hand, higher intensity of residential heating likely led to higher emissions of both suspended particles and their precursors.

ETC/ATNI

2021

Benzo(a)pyrene (BaP) annual mapping. Evaluation of its potential regular updating.

Horálek, Jan; Schreiberova, Marketa; Schneider, Philipp

The report examines the potential regular production of benzo(a)pyrene (BaP) maps at the European scale in line with the operational production of other air quality maps. Stations measuring BaP are relatively scarce at the European scale, so in order to extend the spatial coverage, so-called pseudo station data have been calculated and used together with the actual BaP measurement data. These pseudo station data are derived from PM2.5 or PM10 measurements in locations with no BaP observations.

ETC/ATNI

2021

Long-term trends of air pollutants at national level 2005-2019

Solberg, Sverre; Colette, Augustin

Trend calculations of air pollutants for the periods 2005-2019 have been applied. Sulphur dioxide shows the largest decrease of all pollutants with a reduction of the order of 60-70 %. The agreement between reported emission data and measured concentrations are quite good. For NO2, a mismatch between the trend in air concentrations and NOx emissions is found. While the overall NOx emissions are reported to be reduced by 45 %, the measured NO2 data indicate a decline of the order of 30 % although marked differences between the countries are found. This mismatch could not be explained by changes in meteorology as this is accounted for. Possible reasons for the mismatch could be the NO2/NOx ratio of the emissions, changes in baseline hemispheric ozone concentration and natural emissions. For PM data (PM10 and PM2.5) we find an opposite mismatch, meaning that the PM concentrations show stronger downward trends than the reported emissions. This is likely an effect of the importance of secondary aerosols which are mitigated by other activities than the direct PM emissions. An overall reduction in PM10 of the order of 30-38 % is found during 2005-2019 while the direct emissions give a reduction that is 5-10 percentage units smaller. Similar results are found for PM2.5, but these findings are uncertain due to the less amount of long-term data. For O3, our findings are in line with earlier studies noting that the annual mean ozone concentration has increased while the high peaks have been reduced. But the reduction of the peaks is now within only a few percent and non-significant, while for the 2000-2017 period it was significant and about 10%.

ETC/ATNI

2021

Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual report 2021.

Svendby, Tove Marit; Hansen, Georg H.; Bernet, Leonie; Bäcklund, Are; Nilsen, Anne-Cathrine; Schulze, Dorothea; Johnsen, Bjørn

This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV-measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. The year 2021 was characterized by low total ozone values in June and July, whereas “normal” ozone values were measured during winter and spring.

NILU

2022

Assessment of heavy metal and POP pollution on global, regional and national scales

Ilyin, Ilia; Batrakova, Nadezhda; Gusev, Alexey; Kleimenov, Mikhail; Rozovskaya, Olga; Shatalov, Victor; Strizhkina, Irina; Travnikov, Oleg; Vulykh, Nadejda; Breivik, Knut; Bohlin-Nizzetto, Pernilla; Pfaffhuber, Katrine Aspmo; Aas, Wenche; Poupa, Stephan; Wankmüller, Robert; Ullrich, Bernhard; Bank, Michael; Ho, Quang Tri; Vivanco, Marta García; Theobald, Mark, R.; Garrido, Juan Luis; Gil, Victoria; Couvidat, Florian; Colette, Augustin; Mircea, Mihaela; Adani, Mario; Delia, Ilaria; Kouznetsov, Rostislav D.; Kadancev, Evgeny V.

Meteorological Synthesizing Centre - East (MSC-E)

2022

Vurdering av utslipp til luft fra Wistingfeltet i Barentshavet. Underlag for konsekvensutredning.

Berglen, Tore Flatlandsmo; Tønnesen, Dag

NILU har vurdert miljøkonsekvensene av utslipp til luft fra fremtidig utbygging og drift av Wisting-feltet i Barentshavet. Utslipp av CO2, CH4, N2O og NMVOC er vurdert utfra bidrag til strålingspådriv/global oppvarming. Kraftforsyning fra land med sjøkabel vil sterkt redusere utslippene av CO2. Klimaeffekten av utslipp til luft fra produksjonen vil bli liten. Bidraget fra Wisting til eutrofiering og forsuring gjennom avsetning av NOx og SOx forventes å være lite og knapt målbart. Likeledes vil bidraget fra Wisting til ozonproduksjon være minimalt og knapt målbart. Klimaeffekten av BC-utslipp (Black Carbon) fra installasjonene på Wisting vil bli liten. Samtidig gir utslipp av BC i Arktis større effekt pr. utslippsenhet enn utslipp lenger sør. Det bør derfor være et mål å optimalisere faklingen fra Wisting slik at utslipp av BC blir redusert til et absolutt minimum.

NILU

2021

Integrated assessment of noise and air quality in European cities. Methodology.

Peris, Eulàlia; Öztürk, Evrim Dogan; Gsella, Artur; Blanes, Núria; Sáinz de la Maza, Miquel; Domingues, Francisco; Soares, Joana; Guerreiro, Cristina; Horálek, Jan

The resulting index provides spatial information on the areas most affected combining noise and air pollution across European urban areas. This information can build on and contribute to the EEA’s integrated assessments and it is going to be used to disseminate information on the European environment to policy makers and to European citizens.

ETC/ATNI

2022

Grenseområdene Norge-Russland. Luft- og nedbørkvalitet 2021.

Berglen, Tore Flatlandsmo; Nilsen, Anne-Cathrine; Vadset, Marit; Uggerud, Hilde Thelle; Hak, Claudia; Andresen, Erik

Smelteverkene i nordvest-Russland slapp tidligere ut store mengder svoveldioksid (SO2) og tungmetaller. Utslippene påvirket luft- og nedbørkvalitet i grenseområdene. Smelteverket i Nikel stengte ned 23. desember 2020 og lokal luftkvalitet ble betydelig forbedret. Dog er det fortsatt utslipp fra varmekraftverket i Nikel i den kalde årstiden. Detaljer rundt utslippene fra Zapoljarnyj er ikke kjente. Herværende rapport viser resultatene for kalenderåret 2021, det vil si året etter stengningen. Nivåene av forurensning er lave og grenseverdier og målsettingsverdier er overholdt med klar margin.

NILU

2022

Revising PM2.5 emissions from residential combustion, 2005–2019. Implications for air quality concentrations and trends.

Simpson, David; Kuenen, Jeroen; Fagerli, Hilde; Heinesen, Daniel; Benedictow, Anna Maria Katarina; Denier van der Gon, Hugo A.C.; Visschedijk, Antoon; Klimont, Zbigniew; Aas, Wenche; Lin, Yong; Yttri, Karl Espen; Paunu, Ville-Veikko

Condensable primary organic aerosol (CPOA) emissions are a class of organic compounds that are vapour phase at stack conditions, but which can undergo both condensation and evaporation processes as the stack air is cooled and diluted upon discharge into ambient air. Emission factors may misrepresent, and even miss, the amount of particulate matter (PM) or gas that actually enters the atmosphere, depending on the emission measurement techniques used. In the current emission reporting to EMEP/CLRTAP there is no clear definition of whether condensable organics are included or not, and, if included, to what extent.

In this study, new residential combustion emission estimates have been made for the years 2005-2019 (called TNO Ref2_v2.1) in a consistent manner, with improved estimation of fuel consumption (in particular wood) and emission factors, as well as an updated split of fuel use over different appliances and technologies. For these two elements, data were taken primarily from the Eurostat fuel statistics and the IIASA GAINS model. Three scenarios have been defined: a “typical” case, which is our best estimate, an alternative “ideal” case which excludes the impact of “bad combustion”, and a “high EF” scenario in which higher emission factors are assumed than in the typical scenario. Total emissions in the typical scenario are around 40% higher than in the ideal case (in 2019), whereas resulting emissions in the “high EF” scenario are around 90% higher than in the typical scenario.

The Ref2_v2.1 inventory was used in a series of modelling studies which aimed to assess the importance of condensable organics for current air quality, for trends over time (2010–2019), and for source-receptor calculations.

Including condensables in a consistent way for all countries gave model results (concentrations, trends and bias) in better agreement with observations for OC and PM2.5 than when using the EMEP emissions which have condensables for some countries but not others. However, the model results were sensitive to the choice of Ref2_v2.1 scenario, and also to the assumptions concerning volatility of the CPOA emissions, and assumptions about extra intermediate-volatility volatile organic compounds (IVOC) associated with such emissions.

No single setup performed best for each site. There are many factors that can contribute to such mixed results (activity data, emissions factors, assumed combustion conditions, large and small scale spatial distributions issues in emissions, dispersion and CPOA/IVOC assumptions in the modelling), and much further work (and with other observational data-sets) will be needed to disentangle the reasons for model-measurement discrepancies, and to draw conclusions on how realistic the new emissions are.

Assumptions about volatility seem to be important for both the country-to-itself contribution, and for impacts of each country on others. In the few cases investigated so far, assuming inert CPOA provides results which generally lie within the range of the more complex VBS scenarios. Given the many uncertainties associated with the emissions and the modelling of POA and SOA, these results indicates that the inert CPOA assumptions provide a reasonable first approach for handling POA emissions, which can hopefully be improved once our understanding of the sources and processing of these compounds improves.

The new emission data-base, combined with increasing availability of measurements of organic and other components, should provide the best available basis for future improvements in both the emission inventories and model formulations. Much analysis and further tests remain, both with the other model setups, and ideally with alternative secondary organic aerosol schemes to get a better idea of the sensitivity of the results to the various assumptions concerning both emissions and atmospheric processing of POA.

Nordic Council of Ministers

2022

Revidert tiltaksutredning for lokal luftkvalitet i Bergen

Weydahl, Torleif; Høiskar, Britt Ann Kåstad

Tiltaksutredningen for lokal luftkvalitet i Bergen med handlings- og beredskapsplan skal bidra til at forurensningsnivået holder seg innenfor kravene i forurensningsforskriften. Tiltaksutredningen omfatter en kartlegging av luftkvaliteten i Bergen kommune ved trafikkberegninger og utslipps- og spredningsberegninger for PM10, PM2,5 og NO 2 for Dagens situasjon 2019 og Referansesituasjonen 2030 med eksisterende og eventuelle nye tiltak. Utredningen vurderer effekten som tiltakene har for å overholde krav, men ser også på muligheten for ytterligere reduksjon i henhold til anbefalingene til helsemyndighetene. Basert på resultatene fra beregningene og i samarbeid med oppdragsgiver og referansegruppen, er det foreslått en revidert handlings- og beredskapsplan som skal behandles politisk.

NILU

2022

Re-evaluation and Homogenization of Aerosol Optical Depth Observations in Svalbard (ReHearsol). RCN Project No: 311250/E40 - ReHearsol Final Report

Hansen, Georg H.; Zielinski, Tymon; Pakszys, Paulina; Ritter, Christoph; Gilardoni, Stefania; Eleftheriadis, Konstantinos; Kouremeti, Natalia; Mateos, David; Herrero, Sara; Kazadzis, Stelios; Mazzola, Mauro; Stebel, Kerstin

The aim of this project was to collect, integrate and analyse observations of climate-relevant aerosol parameters (aerosol optical depth (AOD), Ångstrøm exponent (AE), black carbon (BC)) in and around Svalbard. These observations have been performed at different places and with different instrument types, the analysis procedures of which follow different protocols. Annual merged datasets of AOD, AE and BC have been provided to the SIOS Data Management System and are now available for network-wide use in, e.g., Arctic climate and pollution studies. The analysis of the 2002-2020 data have confirmed earlier results showing a good correlation between measurements in Ny-Ålesund and Hornsund, but not a high degree of short-term agreement due to aerosol variability arising from geographical locations and local conditions. There is also a clear link between the columnar AOD/AE-measurements and in-situ aerosol measurements at Gruvebadet Observatory, while a comparison of in-situ measurements at Gruvebadet and Zeppelin Observatory shows deviations varying with season.

NILU

2022

Publikasjon
År
Kategori