Fant 9769 publikasjoner. Viser side 321 av 391:
2008
2013
2022
2011
Climate and other applications of 20 years of Along Track Scanning Radiometer LST measurements. NILU F
2012
2019
Clean air policies are key for successfully mitigating Arctic warming
A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reductions. Fossil fuel use is projected to rapidly decline in an increasingly sustainable world, resulting in far-reaching air quality benefits. Despite human health benefits, reductions in sulfur emissions in a more sustainable world could enhance Arctic warming by 0.8 °C in 2050 relative to the 1995–2014, thereby offsetting climate benefits of greenhouse gas reductions. Targeted and technically feasible emissions reduction opportunities exist for achieving simultaneous climate and human health co-benefits. It would be particularly beneficial to unlock a newly identified mitigation potential for carbon particulate matter, yielding Arctic climate benefits equivalent to those from carbon dioxide reductions by 2050.
Springer Nature
2022
Clean air and healthy lungs. Enhancing the World Bank's Approach to Air Quality Management. Environment and natural resources global practice discussion paper; 03
This report specifically deals with air pollution, which was reported, by the World Health Organization (WHO), as the single largest environmental health risk globally in 2012 (WHO, 2014a). Air pollution from outdoor and household sources jointly account for more than 7 million deaths (3.7 million from ambient air pollution and 4.3 million from household air pollution). The following sections of this chapter present the objectives of, and key aspects of the institutional context for, this report followed by an examination of some of the major drivers of deteriorating ambient air quality in developing countries; air pollution sources and impacts; and the status of air quality management in developing countries. Chapter two presents the results of a desk-based portfolio review of World Bank projects that are relevant to reduction of air pollution. This is followed, in chapter three, by an examination of case studies of World Bank projects whose objectives include addressing ambient air pollution, highlighting good practices and lessons for future work of the Bank in supporting clients. Chapter four presents possible approaches for enhancing future Bank support in helping clients to improve air quality and reduce the associated adverse health outcomes. Chapter five presents overall conclusions and recommendations.
2015
ClairCity Project
2020
ClairCity Project
2019
ClairCity Project
2020
2007
This paper examines the creation of fine resolution maps at 100 m x 100 m resolution using statistical downscaling for the area of Prague, as a case study. This Czech city was selected due to the fine resolution proxy data available for this city. The reference downscaling methodology used is the linear regression and the interpolation of its residuals by the area-to-point kriging. Next to this, several other methods of statistical downscaling have been also executed. The results of different downscaling methods have been compared mutually and against the data from the monitoring stations of Prague, separately for urban background and traffic areas.
The downscaled maps in 100 m x 100 m resolution have been constructed for the area of Prague for three pollutants, namely for NO2, PM10 and PM2.5. Several methods of the statistical downscaling have been compared mutually and against the data from the monitoring stations. In general, the best results are given by the linear regression and the interpolation of its residuals, either by the area-to-point kriging or the bilinear interpolation. In the maps, one can see overall realistic spatial patterns, the main roads in Prague are visible through higher air pollution levels. This is distinct especially for NO2, while for PM10 and PM2.5 the differences between road increments and urban background are smaller as would be expected. The results of the case study for Prague have proven the usefulness of the statistical downscaling for the air quality mapping, especially for NO2. In addition, the population exposure estimates based on the downscaled mapping results have been also calculated.
ETC/HE
2023
2015