Fant 9855 publikasjoner. Viser side 112 av 395:
Polycyclic aromatic hydrocarbons (PAHs) are not
declining in Arctic air despite reductions in their global emissions.
In Svalbard, the Longyearbyen coal-fired power plant
is considered to be one of the major local sources of PAHs.
Power plant stack emissions and ambient air samples, collected
simultaneously at 1 km (UNIS) and 6 km (Adventdalen)
transect distance, were analysed (gaseous and particulate
phases separately) for 22 nitro-PAHs, 8 oxy-PAHs,
and 16 parent PAHs by gas chromatography in combination
with single quadrupole electron capture negative ionization
mass spectrometry (GC-ECNI-MS) and gas chromatography
in combination with triple quadrupole electron ionization
mass spectrometry (GC-EI-MS/MS). Results confirm low
levels of PAH emissions (Sum 16 PAHs D 1:5 μg/kg coal)
from the power plant. Phenanthrene, 9,10-anthraquinone, 9-
fluorenone, fluorene, fluoranthene, and pyrene accounted for
85% of the plant emission (not including naphthalene). A dilution
effect was observed for the transect ambient air samples:
1.26+/- 0.16 and 0.63+/- 0.14 ng/m3 were the sum of all
47 PAH derivatives for UNIS and Adventdalen, respectively.
The PAH profile was homogeneous for these recipient stations
with phenanthrene and 9-fluorenone being most abundant.
Multivariate statistical analysis confirmed coal combustion
and vehicle and marine traffic as the predominant
sources of PAHs. Secondary atmospheric formation of 9-
nitroanthracene and 2C3-nitrofluoranthene was evaluated
and concluded. PAHs partitioning between gaseous and particulate
phases showed a strong dependence on ambient temperatures
and humidity. The present study contributes important
data which can be utilized to eliminate uncertainties in
model predictions that aim to assess the extent and impacts
of Arctic atmospheric contaminants.
2020
2011
2017
2009
2005
2003
2003
1999
2016
2015
2014
Polychlorinated biphenyls (PCBs) can be used as chemical sentinels for the assessment of anthropogenic influences on Arctic environmental change. We present an overview of studies on PCBs in the Arctic and combine these with the findings from ArcRisk—a major European Union-funded project aimed at examining the effects of climate change on the transport of contaminants to and their behaviour of in the Arctic—to provide a case study on the behaviour and impact of PCBs over time in the Arctic. PCBs in the Arctic have shown declining trends in the environment over the last few decades. Atmospheric long-range transport from secondary and primary sources is the major input of PCBs to the Arctic region. Modelling of the atmospheric PCB composition and behaviour showed some increases in environmental concentrations in a warmerArctic, but the general decline in
PCB levels is still the most prominent feature. ‘Within-Arctic’ processing of PCBs will be affected by climate change-related processes such as changing wet deposition. These in turn will influence biological exposure and uptake of PCBs. The pan-Arctic rivers draining large Arctic/sub-Arctic catchments provide a significant source of PCBs to the Arctic Ocean, although changes in hydrology/sediment transport combined with a changing marine environment remain areas of uncertainty with regard to PCB fate. Indirect effects of climate change on human exposure, such as a changing diet will influence and possibly reduce PCB
exposure for indigenous peoples. Body burdens of PCBs have declined since the 1980s and are predicted to decline further.
2018
2002
2015
Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10–13), medium-chain (MCCPs, C14–17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs–C10–13 are found to be mostly present in the gas phase, PCAs–C14–17 in particulate matter and organic films, and PCAs–C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.
Elsevier
2024
2002
2001
Urban & Fischer
2023
2006