Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9760 publikasjoner. Viser side 107 av 391:

Publikasjon  
År  
Kategori

Assessing the Relocation Robustness of on Field Calibrations for Air Quality Monitoring Devices

Esposito, E; Salvato, M; De Vito, S.; Fattoruso, G; Castell, Nuria; Karatzas, K.; Francia, G Di

Springer

2018

Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2017 - Annual report

Myhre, Cathrine Lund; Svendby, Tove Marit; Hermansen, Ove; Lunder, Chris Rene; Platt, Stephen Matthew; Fiebig, Markus; Fjæraa, Ann Mari; Hansen, Georg Heinrich; Schmidbauer, Norbert; Krognes, Terje; Walker, Sam-Erik

The report summaries the activities and results of the greenhouse gas monitoring at the Zeppelin Observatory situated on Svalbard in Arctic Norway during the period 2001-2017, and the greenhouse gas monitoring and aerosol observations from Birkenes for 2009-2017.

NILU

2018

Variability in Atmospheric Methane From Fossil Fuel and Microbial Sources Over the Last Three Decades

Thompson, Rona Louise; Nisbet, E. G.; Pisso, Ignacio; Stohl, Andreas; Blake, D.; Dlugokencky, E. J.; Helmig, D.; White, J. W. C.

Atmospheric measurements show an increase in CH4 from the 1980s to 1998 followed by a period of near‐zero growth until 2007. However, from 2007, CH4 has increased again. Understanding the variability in CH4 is critical for climate prediction and climate change mitigation. We examine the role of CH4 sources and the dominant CH4 sink, oxidation by the hydroxyl radical (OH), in atmospheric CH4 variability over the past three decades using observations of CH4, C2H6, and δ13CCH4 in an inversion. From 2006 to 2014, microbial and fossil fuel emissions increased by 36 ± 12 and 15 ± 8 Tg y−1, respectively. Emission increases were partially offset by a decrease in biomass burning of 3 ± 2 Tg y−1 and increase in soil oxidation of 5 ± 6 Tg y−1. A change in the atmospheric sink did not appear to be a significant factor in the recent growth of CH4.

American Geophysical Union (AGU)

2018

Recent Arctic ozone depletion: Is there an impact of climate change?

Pommereau, Jean-Pierre; Goutail, Florence; Pazmino, Andrea; Lefèvre, Franck; Chipperfield, Martyn P.; Feng, Wuhu; van Roozendael, Michel; Jepsen, Nis; Hansen, Georg; Kivi, Rigel; Bognar, Kristof; Strong, Kimberly; Walker, Kaley; Kuzmichev, Alexandr; Khattatov, Slava; Sitnikova, Vera

After the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter 2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud (PSC) formation, persisted for one month in January 2016. This is the first observation of such an event and resulted in unprecedented dehydration/denitrification of the polar vortex. Although chemistry–climate models (CCMs) generally predict further cooling of the lower stratosphere with the increasing atmospheric concentrations of greenhouse gases (GHGs), significant differences are found between model results indicating relatively large uncertainties in the predictions. The link between stratospheric temperature and ozone loss is well understood and the observed relationship is well captured by chemical transport models (CTMs). However, the strong dynamical variability in the Arctic means that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur until the concentrations of ozone-depleting substances return to their 1960 values. It is thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s, might be significantly delayed. Most important in order to predict the future evolution of Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure continuation of high-quality ground-based and satellite ozone observations with special focus on monitoring the annual ozone loss during the Arctic winter.

Elsevier

2018

Observation of turbulent dispersion of artificially released SO2 puffs with UV cameras

Dinger, Anna Solvejg; Stebel, Kerstin; Cassiani, Massimo; Ardeshiri, Hamidreza; Bernardo, Cirilo; Kylling, Arve; Park, Soon-Young; Pisso, Ignacio; Schmidbauer, Norbert; Wasseng, Jan Henrik; Stohl, Andreas

In atmospheric tracer experiments, a substance is released into the turbulent atmospheric flow to study the dispersion parameters of the atmosphere. That can be done by observing the substance's concentration distribution downwind of the source. Past experiments have suffered from the fact that observations were only made at a few discrete locations and/or at low time resolution. The Comtessa project (Camera Observation and Modelling of 4-D Tracer Dispersion in the Atmosphere) is the first attempt at using ultraviolet (UV) camera observations to sample the three-dimensional (3-D) concentration distribution in the atmospheric boundary layer at high spatial and temporal resolution. For this, during a three-week campaign in Norway in July 2017, sulfur dioxide (SO2), a nearly passive tracer, was artificially released in continuous plumes and nearly instantaneous puffs from a 9m high tower. Column-integrated SO2 concentrations were observed with six UV SO2 cameras with sampling rates of several hertz and a spatial resolution of a few centimetres. The atmospheric flow was characterised by eddy covariance measurements of heat and momentum fluxes at the release mast and two additional towers. By measuring simultaneously with six UV cameras positioned in a half circle around the release point, we could collect a data set of spatially and temporally resolved tracer column densities from six different directions, allowing a tomographic reconstruction of the 3-D concentration field. However, due to unfavourable cloudy conditions on all measurement days and their restrictive effect on the SO2 camera technique, the presented data set is limited to case studies. In this paper, we present a feasibility study demonstrating that the turbulent dispersion parameters can be retrieved from images of artificially released puffs, although the presented data set does not allow for an in-depth analysis of the obtained parameters. The 3-D trajectories of the centre of mass of the puffs were reconstructed enabling both a direct determination of the centre of mass meandering and a scaling of the image pixel dimension to the position of the puff. The latter made it possible to retrieve the temporal evolution of the puff spread projected to the image plane. The puff spread is a direct measure of the relative dispersion process. Combining meandering and relative dispersion, the absolute dispersion could be retrieved. The turbulent dispersion in the vertical is then used to estimate the effective source size, source timescale and the Lagrangian integral time. In principle, the Richardson–Obukhov constant of relative dispersion in the inertial subrange could be also obtained, but the observation time was not sufficiently long in comparison to the source timescale to allow an observation of this dispersion range. While the feasibility of the methodology to measure turbulent dispersion could be demonstrated, a larger data set with a larger number of cloud-free puff releases and longer observation times of each puff will be recorded in future studies to give a solid estimate for the turbulent dispersion under a variety of stability conditions.

2018

Tiltaksutredning for lokal luftkvalitet i Sarpsborg og Fredrikstad

Weydahl, Torleif; Grythe, Henrik; Høiskar, Britt Ann Kåstad; Svorstøl, Eli-Trine; Haug, Tormod Wergeland

Tiltaksutredningen omfatter en kartlegging av luftkvaliteten i Fredrikstad og Sarpsborg ved trafikkberegninger og utslipps- ogspredningsberegninger for PM10 og NO2 for dagens situasjon (2016) og framtidig situasjon (2022). Forurensningsnivåene er innenfor de juridiske grenseverdiene og det er ikke formelt krav til tiltak utover gjeldende handlingsplan (2017). For å redusere risikoen for overskridelser av grenseverdiene i et «ekstrem år» og generelt forbedre luftkvaliteten, er enkelte nye tiltak effektberegnet sammen med tiltak i Bypakke Nedre Glomma. Basert på resultatene fra beregningene og i samarbeid
med oppdragsgiver og prosjektgruppen, er det foreslått en revidert seks-punkts handlingsplan, med ytterligere tre tiltak for forbedret luftkvalitet utover de juridiske kravene. Tiltaksutredningen med handlingsplan skal behandles politisk.

NILU

2018

Maternal-Child Exposures to Persistent Organic Pollutants in Dhaka, Bangladesh

Leung, Michael; Nøst, Therese Haugdahl; Wania, Frank; Papp, Eszter Agnes; Herzke, Dorte; Mahmud, Abdullah Al; Roth, Daniel E

Springer Nature

2018

End-user feedback on a low-cost portable air quality sensor system — Are we there yet?

Robinson, Johanna A.; Kocman, David; Horvat, Milena; Bartonova, Alena

MDPI

2018

Air quality in Norwegian cities in 2015. Evaluation Report for NBV Main Results.

Tarrasón, Leonor; Sousa Santos, Gabriela; Vo, Dam Thanh; Vogt, Matthias; Lopez-Aparicio, Susana; Denby, Bruce; Tønnesen, Dag Arild; Sundvor, Ingrid; Røen, Håvard Vika; Høiskar, Britt Ann Kåstad

This report documents the final deliveries of the first phase of development of the Norwegian Air Quality Planning Tool,
also called “Nasjonalt Beregningsverktøy” or NBV. The main purpose of NBV is to provide a common methodological and
information platform for local air quality modelling applications. The system is addressed to local and regional
environmental authorities, air quality experts and consulting companies. It is intended to help them meet the requirements
of current air quality legislation, to support local air quality planning and facilitate air quality good practices where people live.
The report constitutes a comprehensive user guide for the NBV services available at http://www.luftkvalitet-nbv.no. It
presents each of the different products developed at NBV, documents how the product has been calculated, provides
recommendations on how best to use it for planning purposes and explains the main strengths and limitations of each
product. The report also includes an extensive validation of the air quality information currently available at NBV.

NILU

2018

Air quality in 7 Norwegian municipalities in 2015. Summary report for NBV results.

Tarrasón, Leonor; Sousa Santos, Gabriela; Vo, Dam Thanh; Hamer, Paul David; Vogt, Matthias; Lopez-Aparicio, Susana; Røen, Håvard Vika; Høiskar, Britt Ann Kåstad

This report documents the methodology used to compile air quality information for the year 2015 in seven Norwegian municipality areas under the first phase of development of the Norwegian Air Quality Planning Tool, also called “Nasjonalt Beregningsverktøy” or NBV. It follows a similar structure to and complements the final report entitled “Air quality in 7 Norwegian municipalities in 2015 – Summary report for NBV results” (NILU rapport 21/2017) where information on air quality in the seven main city areas in Norway was presented.

This report constitutes a user guide for the NBV-services, available at http://www.luftkalitet-nbv.no, in municipal areas. It provides recommendations on how to best use each product for air quality planning purposes and explains the main strengths and limitations of the results. The NBV air quality data for municipalities is subject to larger uncertainties than the data available for the main Norwegian city areas and this has to be taken into consideration when analyzing the results.

NILU

2018

Interaction Between Anode Aggregate and Binder in the Sessile Drop Wetting Test

Rausch, Bruno; Chmelar, Juraj; Linga, Hogne; Lossius, Lorentz Petter; Thorne, Rebecca Jayne; Tomkute, Viktorija

Springer

2018

CSF sodium at toxic levels precedes delirium in hip fracture patients

Hassel, Bjørnar; Mariussen, Espen; Idland, Ane-Victoria; Dahl, Gry Torsæter; Ræder, Johan; Frihagen, Frede Jon; Berg, Jens Petter; Chaudhry, Farrukh Abbas; Wyller, Torgeir Bruun; Watne, Leiv

Elsevier

2018

Organic micropollutants in the riverine sedimentsalong the lower stretch of the River Ganga: Occurrences, sources and risk assessment

Chakraborty, Paromita; Mukhopadhyay, Moitraiyee; Sampath, Srimurali; Ramaswamy, BabuRajendran; Katsoyiannis, Athanasios A.; Cincinelli, Alessandra; Snow, Daniel

Elsevier

2018

Air quality in Europe - 2018 report

Guerreiro, Cristina; Ortiz, Alberto Gonzalez; de Leeuw, Frank; Viana, Mar; Colette, Augustin

The current report presents an updated overview and analysis of air quality in Europe from 2000 to 2016. It reviews the progress made towards meeting the air quality standards established in the two EU Ambient Air Quality Directives and towards the World Health Organization (WHO) air quality guidelines (AQGs). It also presents the latest findings and estimates on population and ecosystem exposure to the air pollutants with the greatest impacts and effects. The evaluation of the status of air quality is based mainly on reported ambient air measurements, in conjunction with modelling data and data on anthropogenic emissions and their evolution over time.

European Environment Agency

2018

Mortality induced by PM2.5 exposure following the 1783 Laki eruption using reconstructed meteorological fields

Balkanski, Y.; Menut, L.; Garnier, E; Wang, R; Evangeliou, Nikolaos; Jourdain, S.; Eschstruth, C.; Vrac, M; Yiou, P.

The 1783–1784 Laki eruption provides a natural experiment to evaluate the performance of chemistry-transport models in predicting the health impact of air particulate pollution. There are few existing daily meteorological observations during the second part of the 18th century. Hence, creating reasonable climatological conditions for such events constitutes a major challenge. We reconstructed meteorological fields for the period 1783–1784 based on a technique of analogues described in the Methods. Using these fields and including detailed chemistry we describe the concentrations of sulphur (SO2/SO4) that prevail over the North Atlantic, the adjoining seas and Western Europe during these 2 years. To evaluate the model, we analyse these results through the prism of two datasets contemporary to the Laki period: • The date of the first appearance of ‘dry fogs’ over Europe, • The excess mortality recorded in French parishes over the period June–September 1783. The sequence of appearances of the dry fogs is reproduced with a very-high degree of agreement to the first dataset. High concentrations of SO2/SO4 are simulated in June 1783 that coincide with a rapid rise of the number of deceased in French parishes records. We show that only a small part of the deceased of the summer of 1783 can be explained by the present-day relationships between PM2.5 and relative risk. The implication of this result is that other external factors such as the particularly warm summer of 1783, and the lack of health care at the time, must have contributed to the sharp increase in mortality over France recorded from June to September 1783.

2018

ESA Climate Change Initiative Phase II Soil Moisture. Product Validation and Intercomparison Report. Revision 3 (PVIR), D4.1.2, Version 0.1, 12 October 2018.

Lahoz, William A.; Blyverket, Jostein; Hamer, Paul

Prepared by Earth Observation Data Centre for Water Resources Monitoring (EODC) GmbH in cooperation with TU Wien, GeoVille, ETH Zürich, TRANSMISSIVITY, AWST, FMI, UCC and NILU

The ESA Climate Change Initiative Phase 2 Soil Moisture Project

2018

Monitoring of environmental contaminants in air and precipitation. Annual report 2017.

Bohlin-Nizzetto, Pernilla; Aas, Wenche; Warner, Nicholas

This monitoring report presents data from 2017 and time-trends for the Norwegian programme for Long-range atmospheric transported contaminants. The results cover 180 organic compounds and 11 heavy metals. The organic contaminants include regulated persistent organic pollutants (POPs) as
well as POP-like contaminants not yet subjected to international regulations. Five groups of new POP-like contaminants were included for the first time in 2017.

NILU

2018

Social-environmental analysis of methane in the South China Sea and bordering countries

Tseng, Hsiao-Chun; Newton, Alice; Chen, Chen-Tung Arthur; Borges, Alberto V.; DelValls, T. Angel

2018

New brominated flame retardants and dechlorane plus in the Arctic: Local sources and bioaccumulation potential in marine benthos

Carlsson, Pernilla; Vrana, Branislav; Sobotka, Jaromír; Borgå, Katrine; Bohlin-Nizzetto, Pernilla; Varpe, Øystein

Pergamon Press

2018

Higher plasma oxidative damage and lower plasma antioxidant defences in an Arctic seabird exposed to longer perfluoroalkyl acids

Costantini, David; Blévin, Pierre; Herzke, Dorte; Moe, Børge; Gabrielsen, Geir W.; Bustnes, Jan Ove; Chastel, Olivier

Elsevier

2018

Screening Programme 2017 – AMAP Assessment Compounds

Schlabach, Martin; van Bavel, Bert; Baz-Lomba, Jose Antonio; Borgen, Anders; Gabrielsen, Geir W.; Götsch, Arntraut; Halse, Anne Karine; Hanssen, Linda; Krogseth, Ingjerd Sunde; Nikiforov, Vladimir; Nygård, Torgeir; Bohlin-Nizzetto, Pernilla; Reid, Malcolm James; Rostkowski, Pawel; Samanipour, Saer

This report summarizes the findings of a screening study on the occurrence of emerging substances selected by AMAP and other related substances measured earlier. The study includes selected solvents, siloxanes, flame retardants, UV compounds, pesticides, bisphenols and other PBT compounds in effluent, ambient air, biota, and marine plastic.

NILU

2018

NERVE - Utslipsmodell for veitrafikk. Dokumentasjon av beregningsmodell for klimagassutslipp i norske kommuner.

Weydahl, Torleif; Grythe, Henrik; Haug, Tormod Wergeland; Høyem, Harald

NILU og Urbanet Analyse har på oppdrag fra Miljødirektoratet utviklet modellen NERVE («Norwegian Emissions from Road
Vehicle Exhaust») for klimagassutslipp fra veitrafikken i norske kommuner. NERVE beregner klimagassutslipp fra
veitrafikken totalt innenfor hver kommune geografisk og for kommunens innbyggere, både som totalt utslipp og som en
utslippsfaktor (g/km). NERVE en en «bottom-up» modell som bygger på fire detaljerte datasett; 1) Veinettet ved alle
offentlige veier fra Nasjonal vegdatabank (NVDB), 2) trafikk på vei fra Regional Transport Model (RTM), 3)
kjørelengdestatistikken for norskregistrerte kjøretøy fra Statistisk Sentralbyrå Norge (SSB) og 4) utslippsfaktorer fra HBEFA(Hand Book of Emission FActors for Road Transport.

NILU

2018

Publikasjon
År
Kategori