Fant 9887 publikasjoner. Viser side 326 av 396:
2021
2021
Luftkvalitet i Ny-Ålesund. Målinger av lokal luftkvalitet 2019 og 2020.
De målte konsentrasjonene var generelt lave for alle komponenter og under nasjonale grenseverdier for beskyttelse av menneskets helse og økosystemet. Vind fra nordlige sektorer ga de høyeste gjennomsnittskonsentrasjonene av nitrogenoksider og svoveldioksid, noe som peker på kraftstasjonen og havnen som mulige kilder. Vi ser også enkelte episoder med langtransport av svoveldioksid.
NILU
2021
The increased availability of commercially-available low-cost air quality sensors combined with increased interest in their use by citizen scientists, community groups, and professionals is resulting in rapid adoption, despite data quality concerns. We have characterized three out-the-box PM sensor systems under different environmental conditions, using field colocation against reference equipment. The sensor systems integrate Plantower 5003, Sensirion SPS30 and Alphasense OCP-N3 PM sensors. The first two use photometry as a measuring technique, while the third one is an optical particle counter. For the performance evaluation, we co-located 3 units of each manufacturer and compared the results against optical (FIDAS) and gravimetric (KFG) methods for a period of 7 weeks (28 August to 19 October 2020). During the period from 2nd and 5th October, unusually high PM concentrations were observed due to a long-range transport episode. The results show that the highest correlations between the sensor systems and the optical reference are observed for PM1, with coefficients of determination above 0.9, followed by PM2.5. All the sensor units struggle to correctly measure PM10, and the coefficients of determination vary between 0.45 and 0.64. This behavior is also corroborated when using the gravimetric method, where correlations are significantly higher for PM2.5 than for PM10, especially for the sensor systems based on photometry. During the long range transport event the performance of the photometric sensors was heavily affected, and PM10 was largely underestimated. The sensor systems evaluated in this study had good agreement with the reference instrumentation for PM1 and PM2.5; however, they struggled to correctly measure PM10. The sensors also showed a decrease in accuracy when the ambient size distribution was different from the one for which the manufacturer had calibrated the sensor, and during weather conditions with high relative humidity. When interpreting and communicating air quality data measured using low-cost sensor systems, it is important to consider such limitations in order not to risk misinterpretation of the resulting data.
MDPI
2021
Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening
Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal‐free risk assessment of new chemicals and drugs. Microfluidic cell‐based devices allow high‐throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal‐free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo‐like in vitro cell cultivation. It is equipped with a wafer‐based silicon chip including integrated electrodes and a microcavity. A proof‐of‐concept using different relevant cell models shows its suitability for label‐free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label‐free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole‐body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.
Wiley-VCH
2021
American Meteorological Society (AMS)
2021
2021
2021
Oceanic long-range transport of organic additives present in plastic products: an overview
Most plastics are made of persistent synthetic polymer matrices that contain chemical additives in significant amounts. Millions of tonnes of plastics are produced every year and a significant amount of this plastic enters the marine environment, either as macro- or microplastics. In this article, an overview is given of the presence of marine plastic debris globally and its potential to reach remote locations in combination with an analysis of the oceanic long-range transport potential of organic additives present in plastic debris. The information gathered shows that leaching of hydrophobic substances from plastic is slow in the ocean, whereas more polar substances leach faster but mostly from the surface layers of the particle. Their high content used in plastic of several percent by weight allows also these chemicals to be transported over long distances without being completely depleted along the way. It is therefore likely that various types of additives reach remote locations with plastic debris. As a consequence, birds or other wildlife that ingest plastic debris are exposed to these substances, as leaching is accelerated in warm-blooded organisms and in hydrophobic fluids such as stomach oil, compared to leaching in water. Our estimates show that approximately 8100–18,900 t of various organic additives are transported with buoyant plastic matrices globally with a significant portion also transported to the Arctic. For many of these chemicals, long-range transport (LRT) by plastic as a carrier is their only means of travelling over long distances without degrading, resulting in plastic debris enabling the LRT of chemicals which otherwise would not reach polar environments with unknown consequences. The transport of organic additives via plastic debris is an additional long-range transport route that should also be considered under the Stockholm Convention.
Springer
2021
2021
PM10/PM2.5 comparison exercise in Oslo, Norway. Study in 2015-2016 and 2018.
The purpose of the comparison was to test for equivalence and establish calibration functions for automatic PM-analysers commonly used in Norway. The reference laboratory performed a field test at three different locations in Oslo during summer and winter conditions in the periods September 2015 to July 2016 and February to March 2018. Participating analysers were Palas Fidas 200, Grimm EDM 180, TEI TEOM 1405 DF, TEI FH 62 I-R, and R&P TEOM 1400AB.
The report proposes a system to carry out ongoing verification of equivalence in the Norwegian monitoring network and how to calibrate analyser data.
NILU
2021
Atmospheric corrosion due to amine emissions from carbon capture plants
The atmospheric corrosion due to pure amines emitted from carbon capture plants was investigated. Amine exposure was found to initially inhibit the corrosion of steel, by its film formation and alkalinity, but reduce corrosion product layers and lead to freezing point depression, which could in turn increase the corrosion. Very high amine doses were observed to dissolve the metal without the establishing of a corrosion layer. These effects seem much more pronounced on copper than on steel. Climate and air quality variations affect the steel corrosion much more than the expected maximum amine deposition from carbon capture plant emissions.
Elsevier
2021
Safety assessment of titanium dioxide (E171) as a food additive
The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.
2021
2021
The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation
The stratospheric, tropospheric and surface impacts from the 11 year ultraviolet solar spectral irradiance (SSI) variability have been extensively studied using climate models and observations. Here, we demonstrate using idealized model simulations that the Pacific Decadal Oscillation (PDO), which has been shown to impact the tropospheric and stratospheric circulation from sub-decadal to multi-decadal timescales, strongly modulates the solar-induced atmospheric response. To this end, we use a high-top version of the coupled ocean–atmosphere Norwegian Climate Prediction Model forced by the SSI dataset recommended for Coupled Model Intercomparison Project 6. We perform a 24-member ensemble experiment over the solar cycle 23 in an idealized framework. To assess the PDO modulation of the solar signal, we divide the model data into the two PDO phases, PDO+ and PDO−, for each solar (maximum or minimum) phase. By compositing and combining the four categories, we hence determine the component of the solar signal that is independent of the PDO and the modulation of the solar signal by the PDO, along with the solar signal in each PDO phase. Reciprocally, we determine the PDO effect in each solar phase. Our results show that the intensification of the polar vortex under solar maximum is much stronger in the PDO− phase. This signal is transferred into the troposphere, where we find a correspondingly stronger polar jet and weaker Aleutian Low. We further show that the amplification of the solar signal by the PDO− phase is driven by anomalous meridional advection of solar-induced temperature anomalies over northern North America and the North Pacific, which contributes to a decreased meridional eddy heat flux and hence to a decreased vertical planetary wave flux into the stratosphere.
2021
The report evaluates current mapping methodology with respect to city- and NUTS3-levels mapping across Europe. It states that the current mapping can be used at the city and the NUTS3 levels, despite a mild smoothing effect at locations of the measurement stations. However, it suggests a post-processing correction based on the mapping residuals.
A potential new approach for the city ranking have been examined, namely the population-weighted concentration based on the mapping results. While the averaged measurement data from the background stations (as used in the current city ranking) provides a superior information for the whole city in general, the population-weighted concentration also well represents the whole city and gives a consistent information for all cities, including those without station measurements.
Next to this, alternative treatments of rural and urban stations has been evaluated. If the urban traffic areas should be better represented in the final maps, an increased map resolution is recommended.
Several possibilities of future development towards the European-wide city level mapping in a fine resolution have been suggested, namely exploitation of a high-resolution model output in the existing methodology, geostatistical downscaling of the existing spatial maps using fine-resolution proxy datasets and exploitation of existing low-cost sensor networks.
ETC/ATNI
2021
- Aukra, Harøya, Fræna, Møre & Romsdal fylke, Ormen Lange
- Oljeindustri, prosessanlegg, miljøovervåking
- Luftforurensing, nitrogengjødsling, eutrofiering, forsuring
- Vegetasjon, artssammensetning, nedbørsmyr, kystlynghei
- Plantekjemi, jordanalyser, jordvannanalyser, tungmetaller, gjenanalyserAukra, Harøya, Fræna, Møre & Romsdal county, Ormen Lange
- Oil industry, process plant, environmental monitoring
- Air pollution, nitrogen fertilization, eutrophication, acidification
- Vegetation, species composition, bogs, heathland
- Plant chemistry, soil analyses, ground water analyses, heavy
metals, re-analyses
Norsk institutt for naturforskning (NINA)
2021