Fant 9747 publikasjoner. Viser side 368 av 390:
2023
Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
Ozone depletion over the polar regions is monitored each year by satellite- and ground-based instruments. In this study, the vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from Système d'Analyse par Observation Zénithale (SAOZ) ground-based instruments and Multi-Sensor Reanalysis (MSR2). The passive-tracer method allows us to determine the evolution of the daily rate of column ozone destruction and the magnitude of the cumulative column loss at the end of the winter. Three metrics are used in trend analyses that aim to assess the ozone recovery rate over both polar regions: (1) the maximum ozone loss at the end of the winter, (2) the onset day of ozone loss at a specific threshold, and (3) the ozone loss residuals computed from the differences between annual ozone loss and ozone loss values regressed with respect to sunlit volume of polar stratospheric clouds (VPSCs). This latter metric is based on linear and parabolic regressions for ozone loss in the Northern Hemisphere and Southern Hemisphere, respectively. In the Antarctic, metrics 1 and 3 yield trends of −2.3 % and −2.2 % per decade for the 2000–2021 period, significant at 1 and 2 standard deviations (σ), respectively. For metric 2, various thresholds were considered at the total ozone loss values of 20 %, 25 %, 30 %, 35 %, and 40 %, all of them showing a time delay as a function of year in terms of when the threshold is reached. The trends are significant at the 2σ level and vary from 3.5 to 4.2 d per decade between the various thresholds. In the Arctic, metric 1 exhibits large interannual variability, and no significant trend is detected; this result is highly influenced by the record ozone losses in 2011 and 2020. Metric 2 is not applied in the Northern Hemisphere due to the difficulty in finding a threshold value in enough of the winters. Metric 3 provides a negative trend in Arctic ozone loss residuals with respect to the sunlit VPSC fit of −2.00 ± 0.97 (1σ) % per decade, with limited significance at the 2σ level. With such a metric, a potential quantitative detection of ozone recovery in the Arctic springtime lower stratosphere can be made.
2023
Plastic pollution (including microplastics) has been reported in a variety of biotic and abiotic compartments across the circumpolar Arctic. Due to their environmental ubiquity, there is a need to understand not only the fate and transport of physical plastic particles, but also the fate and transport of additive chemicals associated with plastic pollution. Further, there is a fundamental research gap in understanding long-range transport of chemical additives to the Arctic via plastics as well as their behavior under environmentally relevant Arctic conditions. Here, we comment on the state of the science of plastic as carriers of chemical additives to the Arctic, and highlight research priorities going forward. We suggest further research on the transport pathways of chemical additives via plastics from both distant and local sources and laboratory experiments to investigate chemical behavior of plastic additives under Arctic conditions, including leaching, uptake, and bioaccumulation. Ultimately, chemical additives need to be included in strategic monitoring efforts to fully understand the contaminant burden of plastic pollution in Arctic ecosystems.
2023
Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2021
Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2021 og trender over tid for følgende temaer:
(i) Landsrepresentativ skogovervåking;
(ii) Skogøkologiske analyser og målinger av luftkjemi på de intensive overvåkingsflatene;
(iii) Overvåking av bjørkemålere i Troms og Finnmark;
(iv) Barkbilleovervåkingen 2021 og mulig overgang til to generasjoner;
(v) Asiatisk askepraktbille – en dørstokkart?
(vi) Overvåking av askeskuddsyke;
(vii) Andre spesielle skogskader i 2021.
NIBIO
2023
2023
2023
Nasjonalt veikart for CO2M/CO2MVS
På vegne av Norsk Romsenter har NILU – Norsk institutt for luftforskning og CICERO Senter for klimaforskning utarbeidet et veikart for hvordan Norge kan nyttiggjøre seg data fra CO2 Monitoring-satellittene (CO2M) og tjenesten CO2-emissions Monitoring and Verification Support Capacity (CO2MVS) i forvaltning, forskningsmiljøer og næringsliv. Veikartet avslutter med anbefalinger for veien videre for Norge vedrørende CO2M og CO2MVS.
NILU
2023
Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.
Elsevier
2023
2023
2023
2023
2023
2023
2023
2023
2023
Low-cost air quality sensor systems can be deployed at high density, making them a significant candidate of complementary tools for improved air quality assessment. However, they still suffer from poor or unknown data quality. In this paper, we report on a unique dataset including the raw sensor data of quality-controlled sensor networks along with co-located reference data sets. Sensor data are collected using the AirSensEUR sensor system, including sensors to monitor NO, NO2, O3, CO, PM2.5, PM10, PM1, CO2 and meteorological parameters. In total, 85 sensor systems were deployed throughout a year in three European cities (Antwerp, Oslo and Zagreb), resulting in a dataset comprising different meteorological and ambient conditions. The main data collection included two co-location campaigns in different seasons at an Air Quality Monitoring Station (AQMS) in each city and a deployment at various locations in each city (also including locations at other AQMSs). The dataset consists of data files with sensor and reference data, and metadata files with description of locations, deployment dates and description of sensors and reference instruments.
Springer Nature
2023