Fant 9747 publikasjoner. Viser side 376 av 390:
The adverse outcome pathway (AOP) framework plays a crucial role in the paradigm shift of toxicity testing towards the development and use of new approach methodologies. AOPs developed for chemicals are in theory applicable to nanomaterials (NMs). However, only initial efforts have been made to integrate information on NM-induced toxicity into existing AOPs. In a previous study, we identified AOPs in the AOP-Wiki associated with the molecular initiating events (MIEs) and key events (KEs) reported for NMs in scientific literature. In a next step, we analyzed these AOPs and found that mitochondrial toxicity plays a significant role in several of them at the molecular and cellular levels. In this study, we aimed to generate hypothesis-based AOPs related to NM-induced mitochondrial toxicity. This was achieved by integrating knowledge on NM-induced mitochondrial toxicity into all existing AOPs in the AOP-Wiki, which already includes mitochondrial toxicity as a MIE/KE. Several AOPs in the AOP-Wiki related to the lung, liver, cardiovascular and nervous system, with extensively defined KEs and key event relationships (KERs), could be utilized to develop AOPs that are relevant for NMs. However, the majority of the studies included in our literature review were of poor quality, particularly in reporting NM physicochemical characteristics, and NM-relevant mitochondrial MIEs were rarely reported. This study highlights the potential role of NM-induced mitochondrial toxicity in human-relevant adverse outcomes and identifies useful AOPs in the AOP-Wiki for the development of AOPs for NMs.
Elsevier
2024
Global nitrous oxide budget (1980–2020)
Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
2024
2024
Copernicus Atmosphere Monitoring Servicice
2024
NILU har i 2024 bistått Klima- og miljødepartementet (KLD) med en utrednings- og medvirkningsprosess for å se på muligheten for etablering av et samfunnsoppdrag for sirkulær økonomi. Dette er et oppdrag under KLDs rammeavtale for klima- og miljøkunnskap. I regjeringens «Handlingsplan for en sirkulær økonomi» er et av handlingspunktene å utrede et samfunnsoppdrag for sirkulær økonomi. Målet med dette oppdraget var å fasilitere en prosess for å identifisere mulige overordnede mål og delmål og etablere rammen for et mulig nasjonalt samfunnsoppdrag. Aktivitetene i denne fasen inkluderte en serie med koordinerte samskapingsmøter for å mobilisere og engasjere relevante samfunnsaktører og komme fram til en felles forståelse av et mulig målrettet samfunnsoppdrag. Prosessen og resultatene er oppsummert i denne rapporten.
NILU
2024
Screening of compounds in tire wear road run off
Tire related additive chemicals can leach out and enter the environment. Road run-off and recipient waters are particularly prone to contamination by these chemicals, though data from large screening studies is lacking. Here, we present data from water (road run-off & recipients, atmospheric deposition (rain), snow), sediment (marine, snow dumping sites) and biota (blue mussels) samples collected in the Nordic countries. The aim of this study was to provide a first assessment of the presence of tire related chemicals in road run-off and associated samples in the Nordic countries. Tire related additive chemicals were detected in 85 out of 87 samples, with varying concentrations depending on the sample type and location.
Nordic Council of Ministers
2024
2024
Accurate modeling of ash clouds from volcanic eruptions requires knowledge about the eruption source parameters including eruption onset, duration, mass eruption rates, particle size distribution, and vertical-emission profiles. However, most of these parameters are unknown and must be estimated somehow. Some are estimated based on observed correlations and known volcano parameters. However, a more accurate estimate is often needed to bring the model into closer agreement with observations.
This paper describes the inversion procedure implemented at the Norwegian Meteorological Institute for estimating ash emission rates from retrieved satellite ash column amounts and a priori knowledge. The overall procedure consists of five stages: (1) generate a priori emission estimates, (2) run forward simulations with a set of unit emission profiles, (3) collocate/match observations with emission simulations, (4) build system of linear equations, and (5) solve overdetermined systems. We go through the mathematical foundations for the inversion procedure, performance for synthetic cases, and performance for real-world cases. The novelties of this paper include a memory efficient formulation of the inversion problem, a detailed description and illustrations of the mathematical formulations, evaluation of the inversion method using synthetic known-truth data as well as real data, and inclusion of observations of ash cloud-top height. The source code used in this work is freely available under an open-source license and is able to be used for other similar applications.
2024
The movement towards an animal-free testing approach for risk assessment represents a key paradigm shift in toxicology. Risk assessment of engineered and anthropogenic nanoscale materials (NM) is dependent on reliable hazard characterization, which requires validated test methods and models, and increasingly on mechanistic insights into the mode of action. The properties that make NMs so advantageous for a wide range of commercial and industrial applications also pose a challenge when it comes to safety testing under in vitro and in chemico experimental settings. Their large reactive surface area makes NMs prone to interactions with assay reagents, readout signals, or intermediate steps of many test assays, leading to the potential for biased results and data inconsistencies, collectively referred to as interferences. Therefore, methods and protocols developed and validated for conventional chemicals often require adaptation and checking for reliability in NMs' toxicity assessment. This review presents the collected scientific knowledge on NMs-induced interferences for the most common in vitro toxicity assays and methods related to cytotoxicity, oxidative stress and inflammatory response evaluation. Our analysis of existing scientific literature showed that the challenge of NMs-induced interference was not explicitly addressed in more than 90% of the papers published up to 2014 reporting the safety and toxicity of NMs. In later years, increasing number of studies tackled the interference challenge in toxicity testing of NMs, which initiated exhaustive work on standardization and validation of existing regulatory-relevant in vitro test protocols and guidelines. Due to the specificity of the different NMs and the range of ways they can potentially interfere with in vitro assays, interference and fit-for purpose controls should be included for each NM type and method applied, unless label-free assays are selected. Here, we provide a decision tree to guide researchers on how to design experiments to avoid interferences during in vitro testing by taking appropriate mitigation actions and how to include proper interference controls in their experimental design where complete avoidance is not possible. The application of this decision tree will improve the reliability, comparability and reusability of in vitro toxicity data on engineered NMs or ENMs, increasing the relevance of in silico hazard data for use in risk assessment and in science-based risk governance of NMs. The approach is applicable more broadly also, to advanced materials and to hazard assessment of anthropogenic nanoscale materials such as microplastic and tyre-wear particles.
Elsevier
2024
Air pollution is an important cause of adverse health effects, even in the Nordic countries, which have relatively good air quality. Modelling-based air quality assessment of the health impacts relies on reliable model estimates of ambient air pollution concentrations, which furthermore rely on good-quality spatially resolved emission data. While quantitative emission estimates are the cornerstone of good emission data, description of the spatial distribution of the emissions is especially important for local air quality modelling at high resolution. In this paper we present a new air pollution emission inventory for the Nordic countries with high-resolution spatial allocation (1 km × 1 km) covering the years 1990, 1995, 2000, 2005, 2010, 2012, and 2014. The inventory is available at https://doi.org/10.5281/zenodo.10571094 (Paunu et al., 2023). To study the impact of applying national data and methods to the spatial distribution of the emissions, we compared road transport and machinery and off-road sectors to CAMS-REGv4.2, which used a consistent spatial distribution method throughout Europe for each sector. Road transport is a sector with well-established proxies for spatial distribution, while for the machinery and off-road sector, the choice of proxies is not as straightforward as it includes a variety of different type of vehicles and machines operating in various environments. We found that CAMS-REGv4.2 was able to produce similar spatial patterns to our Nordic inventory for the selected sectors. However, the resolution of our Nordic inventory allows for more detailed impact assessment than CAMS-REGv4.2, which had a resolution of 0.1° × 0.05° (longitude–latitude, roughly 5.5 km × 3.5–6.5 km in the Nordic countries). The EMEP/EEA Guidebook chapter on spatial mapping of emissions has recommendations for the sectoral proxies. Based on our analysis we argue that the guidebook should have separate recommendations for proxies for several sub-categories of the machinery and off-road sectors, instead of including them within broader sectors. We suggest that land use data are the best starting point for proxies for many of the subsectors, and they can be combined with other suitable data to enhance the spatial distribution. For road transport, measured traffic flow data should be utilized where possible, to support modelled data in the proxies.
2024
A method was developed to analytically distinguish between the ventilated (v) and nonventilated (nv) fractions of water-soluble ions in deposits of particle indoors. The indicative method was based on low-cost passive outdoor and indoor sampling of the particle and ion deposits and NO2 gas and analysis of the regression values and residuals of the correlations between these parameters. The method was applied to measurements in the Pieskowa Skała Castle Museum in Poland. A dominating source of “soil and building dust” was indicated all year round, probably partly from renovation works of the castle, with larger total infiltration in the winter–spring (W-S) but with a higher proportion of ventilation ingress in the summer–autumn (S-A). About 60%–80%, by mass, of the water-soluble ions in the soil and building dust were calcium and probably some magnesium bicarbonate (Ca(HCO3)2, Mg(HCO3)2) and about 10%–20% sulfates (SO4−−) with calcium (Ca++) and several other cations. The other main source of the ion deposits was indicated to be air pollution, with chloride (Cl−), sulfate (SO4−−), and nitrate (NO3−), from outdoor combustion sources, like traffic, residential heating, and industry. These were mainly v from outdoors in the colder parts of the year, but also to the more open locations in the S-A. A small source of nv sulfate (SO4−−) was identified inside two showcases in the S-A. The study showed good enclosure protection of the museum objects against exposure to particle pollution, but also the need to avoid the trapping of particle pollution inside showcases or closed rooms. The identification of the probable different amounts and sources of v and nv ions in the castle aided preventive actions to reduce the pollution exposure.
John Wiley & Sons
2024
Hydrofluorocarbons (HFCs) are powerful anthropogenic greenhouse gases (GHGs) with high global-warming potentials (GWPs). They have been widely used as refrigerants, insulation foam-blowing agents, aerosol propellants, and fire suppression agents. Since the mid-1990s, emissions of HFCs have been increasing rapidly as they are used in many applications to replace ozone-depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) whose consumption and production have been phased out under the Montreal Protocol (MP). Due to the high GWP of HFCs, the Kigali Amendment to the MP requires the phasedown of production and consumption of HFCs to gradually achieve an 80 %–85 % reduction by 2047, starting in 2019 for non-Article 5 (developed) countries with a 10 % reduction against each defined baseline and later schedules for Article 5 (developing) countries. In this study, we have examined long-term high-precision measurements of atmospheric abundances of five major HFCs (HFC-134a, HFC-143a, HFC-32, HFC-125, and HFC-152a) at Gosan station, Jeju Island, South Korea, from 2008 to 2020. Background abundances of HFCs gradually increased, and the inflow of polluted air masses with elevated abundances from surrounding source regions were detected over the entire period. From these pollution events, we inferred regional and country-specific HFC emission estimates using two independent Lagrangian particle dispersion models and Bayesian inversion frameworks (FLEXPART-FLEXINVERT+ and NAME-InTEM). The spatial distribution of the derived “top-down” (measurement based) emissions for all HFCs shows large fluxes from megacities and industrial areas in the region. Our most important finding is that HFC emissions in eastern China and Japan have sharply increased from 2016 to 2018. The contribution of East Asian HFC emissions to the global total increased from 9 % (2008–2014) to 13 % (2016–2020). In particular, HFC emissions in Japan (Annex I country) rose rapidly from 2016 onward, with accumulated total inferred HFC emissions being ∼ 114 Gg yr−1, which is ∼ 76 Gg yr−1 higher for 2016–2020 than the “bottom-up” (i.e., based on activity data and emission factors) emissions of ∼ 38 Gg yr−1 reported to the United Nations Framework Convention on Climate Change (UNFCCC). This is likely related to the increase in domestic demand in Japan for refrigerants and air-conditioning-system-related products and incomplete accounting. A downward trend of HFC emissions that started in 2019 reflects the effectiveness of the F-gas policy in Japan. Eastern China and South Korea, though not obligated to report to the UNFCCC, voluntarily reported emissions, which also show differences between top-down and bottom-up emission estimates, demonstrating the need for atmospheric measurements, comprehensive data analysis, and accurate reporting for precise emission management. Further, the proportional contribution of each country's CO2-equivalent HFC emissions has changed over time, with HFC-134a decreasing and HFC-125 increasing. This demonstrates the transition in the predominant HFC substances contributing to global warming in each country.
2024
Miljøgifter i hybelkaniner: Forskerne oppfordrer til å støvsuge
Norges forskningsråd
2024
Lifestyle diseases significantly contribute to the global health burden, with lifestyle factors playing a crucial role in the development of depression. The COVID-19 pandemic has intensified many determinants of depression. This study aimed to identify lifestyle and demographic factors associated with depression symptoms among Indians during the pandemic, focusing on a sample from Kolkata, India. An online public survey was conducted, gathering data from 1,834 participants (with 1,767 retained post-cleaning) over three months via social media and email. The survey consisted of 44 questions and was distributed anonymously to ensure privacy. Data were analyzed using statistical methods and machine learning, with principal component analysis (PCA) and analysis of variance (ANOVA) employed for feature selection. K-means clustering divided the pre-processed dataset into five clusters, and a support vector machine (SVM) with a linear kernel achieved 96% accuracy in a multi-class classification problem. The Local Interpretable Model-agnostic Explanations (LIME) algorithm provided local explanations for the SVM model predictions. Additionally, an OWL (web ontology language) ontology facilitated the semantic representation and reasoning of the survey data. The study highlighted a pipeline for collecting, analyzing, and representing data from online public surveys during the pandemic. The identified factors were correlated with depressive symptoms, illustrating the significant influence of lifestyle and demographic variables on mental health. The online survey method proved advantageous for data collection, visualization, and cost-effectiveness while maintaining anonymity and reducing bias. Challenges included reaching the target population, addressing language barriers, ensuring digital literacy, and mitigating dishonest responses and sampling errors. In conclusion, lifestyle and demographic factors significantly impact depression during the COVID-19 pandemic. The study’s methodology offers valuable insights into addressing mental health challenges through scalable online surveys, aiding in the understanding and mitigation of depression risk factors.
Nature Portfolio
2024
Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2023. Annual report
This annual report for 2023 summarizes the activities and results of the greenhouse gas monitoring at the Zeppelin Observatory, situated on Svalbard, during the period 2001-2023, and the greenhouse gas monitoring and aerosol observations from Birkenes for 2009-2023.
NILU
2024
Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.
Springer
2024
Reviderte beregninger av luftkvalitet ved Bjørnheimveien 26
NILU har blitt engasjert av Prem Partners II A/S for å vurdere utbredelse av luftsoner for dagens situasjon og en framtidig situasjon med foreslått boligblokk i Bjørnheimveien 26. Det er anvendt en Gaussisk spredningsmodell for linjekilder (Hiway-2). Når det tas hensyn til lokal topografi ved det aktuelle området, viser beregningene at den nye bygningen i hovedsak faller utenfor rød luftsone på bakkenivå, med unntak av det sørøstre hjørnet av bygningen som beregningene indikerer at ligger innenfor. Videre viser beregningene at skjermingseffekten for eksisterende bebyggelse av en ny bygning er marginal. Rapporten er en revisjon av NILU-rapport 15/2021.
NILU
2024
2024