Fant 9747 publikasjoner. Viser side 388 av 390:
Using a citizen science approach to assess nanoplastics pollution in remote high-altitude glaciers
Nature Portfolio
2025
Per- and polyfluoroalkyl substances (PFAS) have gained significant global attention due to their extensive industrial use and harmful effects on various organisms. Among these, perfluoroalkyl acids (PFAAs) are well-studied, but their diverse precursors remain challenging to monitor. The Total Oxidizable Precursor (TOP) assay offers a powerful approach to converting these precursors into detectable PFAAs. In this study, the TOP assay was applied to samples from the East Asian-Australian Flyway, a critical migratory route for millions of shorebirds. Samples included shellfish from China's coastal mudflats, key stopover sites for these birds, and blood and liver samples from shorebirds overwintering in Australia. The results showed a substantial increase in perfluorocarboxylic acids (PFCAs) across all sample types following the TOP assay, with the most significant increases in shorebird livers (Sum PFCAs increased by 18,156 %). Intriguingly, the assay also revealed unexpected increases in perfluorosulfonic acids (PFSAs), suggesting the presence of unidentified precursors. These findings highlight the need for further research into these unknown precursors, their sources, and their ecological impacts on shorebirds, other wildlife, and potential human exposure. This study also provides crucial insights into the TOP assay’s strengths and limitations in studying PFAS precursor dynamics in biological matrices.
Elsevier
2025
Recommendation technologies are widespread in streaming services, e-commerce, social media, news, and content management. Besides recommendation generation, its presentation is also important. Most research and development focus on the technical aspects of recommendation generation; therefore, a gap exists between recommendation generation and its effective presentation and user interaction. This study focuses on how personalized recommendations can be presented and interacted with in a music recommendation system using interactive visual interfaces. Interactive interface modeling with User-Centered Design (UCD) in a recommendation system is essential for creating a user-friendly, engaging, and personalized experience. By involving users in the recommendation process and considering their feedback, the system can deliver more relevant content, foster user trust, and improve overall user satisfaction and engagement. In this study, the visual interface design and development of a personalized music recommendation prototype (MusicReco) are presented using an iterative UCD approach, involving twenty end-users, one researcher, three academic professionals, and four experts. As the study is more inclined toward the recommendation presentation and visual modeling, we used a standard content-based filtering algorithm on the publicly available Spotify dataset for music recommendation generation. End-users helped to mature the MusicReco prototype to a basic working version through continuous feedback and design inputs on their needs, context, preferences, personalization, and effective visualization. Moreover, MusicReco captures the idea of mood-based tailored recommendations to encourage end-users. Overall, this study demonstrates how UCD can enhance the presentation and interaction of mood-based music recommendations, effectively engaging users with advancements in recommendation algorithms as a future focus.
IEEE (Institute of Electrical and Electronics Engineers)
2025
Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds. Results show that these soils can actively function as sinks of these compounds, despite their different physiochemical properties. Upper active layer possessed relatively higher uptake capacities; factors including soil moisture, organic matter, and microbial biomass carbon were identified as the main factors correlating with the uptake rates. Additionally, uptake coefficients for several compounds were calculated for their potential use in future model development. Correlation analysis and the varying coefficients indicate that the sink was likely biotic. The development of a deeper active layer under climate change may enhance the sink capacity and reduce the net emissions of volatile organic compounds from permafrost thaw.
Springer Nature
2025
Citizen-operated low-cost air quality sensors (LCSs) have expanded air quality monitoring through community engagement. However, still challenges related to lack of semantic standards, data quality, and interoperability hinder their integration into official air quality assessments, management, and research. Here, we introduce FILTER, a geospatially scalable framework designed to unify, correct, and enhance the reliability of crowd-sourced PM2.5 data across various LCS networks. FILTER assesses data quality through five steps: range check, constant value detection, outlier detection, spatial correlation, and spatial similarity. Using official data, we modeled PM2.5 spatial correlation and similarity (Euclidean distance) as functions of geographic distance as benchmarks for evaluating whether LCS measurements are sufficiently correlated/consistent with neighbors. Our study suggests a −10 to 10 Median Absolute Deviation threshold for outlier flagging (360 h). We find higher PM2.5 spatial correlation in DJF compared to JJA across Europe while lower PM2.5 similarity in DJF compared to JJA. We observe seasonal variability in the maximum possible distance between sensors and reference stations for in-situ (remote) PM2.5 data correction, with optimal thresholds of ∼11.5 km (DJF), ∼12.7 km (MAM), ∼20 km (JJA), and ∼17 km (SON). The values implicitly reflect the spatial representativeness of stations. ±15 km relaxation for each season remains feasible when data loss is a concern. We demonstrate and validate FILTER's effectiveness using European-scale data originating from the two community-based monitoring networks, sensor.community and PurpleAir with QC-ed/corrected output including 37,085 locations and 521,115,762 hourly timestamps. Results facilitate uptake and adoption of crowd-sourced LCS data in regulatory applications.
Elsevier
2025
American Chemical Society (ACS)
2025
Fungus-farming termites cultivate a Termitomyces fungus monoculture in enclosed gardens (combs) free of other fungi, except during colony declines, where Pseudoxylaria spp. stowaway fungi appear and take over combs. Here, we determined Volatile Organic Compounds (VOCs) of healthy Macrotermes bellicosus nests in nature and VOC changes associated with comb decay during Pseudoxylaria takeover. We identified 443 VOCs and unique volatilomes across samples and nest volatilomes that were mainly composed of fungus comb VOCs with termite contributions. Few comb VOCs were linked to chemical changes during decay, but longipinocarvone and longiverbenone were only emitted during comb decay. These terpenes may be involved in Termitomyces defence against antagonistic fungi or in fungus-termite signalling of comb state. Both comb and Pseudoxylaria biomass volatilomes contained many VOCs with antimicrobial activity that may serve in maintaining healthy Termitomyces monocultures or aid in the antagonistic takeover by Pseudoxylaria during colony decline. We further observed a series of oxylipins with known functions in the regulation of fungus germination, growth, and secondary metabolite production. Our volatilome map of the fungus-farming termite symbiosis provides new insights into the chemistry regulating complex interactions and serves as a valuable guide for future work on the roles of VOCs in symbioses.
John Wiley & Sons
2025
Personalized approaches are required for stroke management due to the variability in symptoms, triggers, and patient characteristics. An innovative stroke recommendation system that integrates automatic predictive analysis with semantic knowledge to provide personalized recommendations for stroke management is proposed by this paper. Stroke exacerbation are predicted and the recommendations are enhanced by the system, which leverages automatic Tree-based Pipeline Optimization Tool (TPOT) and semantic knowledge represented in an OWL Ontology (StrokeOnto). Digital sovereignty is addressed by ensuring the secure and autonomous control over patient data, supporting data sovereignty and compliance with jurisdictional data privacy laws. Furthermore, classifications are explained with Local Interpretable Model-Agnostic Explanations (LIME) to identify feature importance. Tailored interventions based on individual patient profiles are provided by this conceptual model, aiming to improve stroke management. The proposed model has been verified using public stroke dataset, and the same dataset has been utilized to support ontology development and verification. In TPOT, the best Variance Threshold + DecisionTree Classifier pipeline has outperformed other supervised machine learning models with an accuracy of 95.2%, for the used datasets. The Variance Threshold method reduces feature dimensionality with variance below a specified threshold of 0.1 to enhance predictive accuracy. To implement and evaluate the proposed model in clinical settings, further development and validation with more diverse and robust datasets are required.
Elsevier
2025
Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (bAbs,BC) and BrC (bAbs,BrC) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The contribution of bAbs,BrC to total absorption (bAbs), i.e. %AbsBrC, was lower at traffic sites (11–20 %), exceeding 30 % at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources, insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher bAbs and AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and biomass burning emissions in the east. Seasonal analysis showed increased bAbs, bAbs,BC, bAbs,BrC in winter, with stronger %AbsBrC, leading to higher AAE. Diel cycles of bAbs,BC peaked during morning and evening rush hours, whereas bAbs,BrC, %AbsBrC, AAE, and AAEBrC peaked at night when emissions from household activities accumulated. Decade-long trends analyses demonstrated a decrease in bAbs, due to reduction of BC emissions, while bAbs,BrC and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute significantly to UV–VIS radiation presenting highly variable absorption properties in Europe.
Elsevier
2025
This study evaluated galvanostatic three-dimensional electrolysis using ceramic carbon foam anodes for the removal of emerging pollutants from wastewater and assessed transformation product formation. Five pollutants (paracetamol, triclosan, bisphenol A, caffeine, and diclofenac) were selected based on their detection in wastewater treatment plant effluents. Electrochemical oxidation was carried out on artificial wastewater spiked with these compounds under galvanostatic conditions (50, 125, and 250 mA) using a stainless steel tube electrolyzer with three ceramic carbon foam anodes and a stainless steel cathode. Decreasing pollutant concentrations were observed in all of the experiments. Nontarget chemical analysis using liquid chromatography coupled to a high-resolution mass spectrometer detected 338 features with increasing intensity including 12 confirmed transformation products (TPs). Real wastewater effluent spiked with the pollutants was then electrolyzed, again showing pollutant removal, with 9 of the 12 previously identified TPs present and increasing. Two TPs (benzamide and 2,4-dichlorophenol) are known toxicants, indicating the formation of a potential toxic by-product during electrolysis. Furthermore, electrolysis of unspiked real wastewater revealed the removal of five pharmaceuticals and a drug metabolite. While demonstrating electrolysis’ ability to degrade pollutants in wastewater, the study underscores the need to investigate transformation product formation and toxicity implications of the electrolysis process.
American Chemical Society (ACS)
2025
På oppdrag fra Alcoa Norway AS dept. Mosjøen har NILU utført målinger i omgivelses-luft rundt smelteverket i Mosjøen. Målingene ble utført med aktiv prøvetaking (fluor, SO2, metaller, PAH, PM10) og passiv prøvetaking (SO2, støvnedfall). Måleprosjektet ble utført i perioden 22. mai – 19. august 2024. Alle målte komponenter var godt under de individuelle grenseverdier, målsettingsverdier og luftkvalitetskriterier i måleperioden. Siden Mosjøen er mest utsatt for utslipp fra aluminiumsverket i sommermånedene, pga. hovedvindretning fra fjorden, over smelteverket mot byen, blir måleresultatene et øvre anslag for bidraget fra smelteverket til konsentrasjonene i Mosjøen over hele året.
NILU
2025
2025
Sunnere byer: – Jeg ville prioritert enkel, bilfri tilgang til alt du trenger i hverdagen
Norges forskningsråd
2025
2025
CompSafeNano project: NanoInformatics approaches for safe-by-design nanomaterials
The CompSafeNano project, a Research and Innovation Staff Exchange (RISE) project funded under the European Union's Horizon 2020 program, aims to advance the safety and innovation potential of nanomaterials (NMs) by integrating cutting-edge nanoinformatics, computational modelling, and predictive toxicology to enable design of safer NMs at the earliest stage of materials development. The project leverages Safe-by-Design (SbD) principles to ensure the development of inherently safer NMs, enhancing both regulatory compliance and international collaboration. By building on established nanoinformatics frameworks, such as those developed in the H2020-funded projects NanoSolveIT and NanoCommons, CompSafeNano addresses critical challenges in nanosafety through development and integration of innovative methodologies, including advanced in vitro models, in silico approaches including machine learning (ML) and artificial intelligence (AI)-driven predictive models and 1st-principles computational modelling of NMs properties, interactions and effects on living systems. Significant progress has been made in generating atomistic and quantum-mechanical descriptors for various NMs, evaluating their interactions with biological systems (from small molecules or metabolites, to proteins, cells, organisms, animals, humans and ecosystems), and in developing predictive models for NMs risk assessment. The CompSafeNano project has also focused on implementing and further standardising data reporting templates and enhancing data management practices, ensuring adherence to the FAIR (Findable, Accessible, Interoperable, Reusable) data principles. Despite challenges, such as limited regulatory acceptance of New Approach Methodologies (NAMs) currently, which has implications for predictive nanosafety assessment, CompSafeNano has successfully developed tools and models that are integral to the safety evaluation of NMs, and that enable the extensive datasets on NMs safety to be utilised for the re-design of NMs that are inherently safer, including through prediction of the acquired biomolecule coronas which provide the biological or environmental identities to NMs, promoting their sustainable use in diverse applications. Future efforts will concentrate on further refining these models, expanding the NanoPharos Database, and working with regulatory stakeholders thereby fostering the widespread adoption of SbD practices across the nanotechnology sector. CompSafeNano's integrative approach, multidisciplinary collaboration and extensive stakeholder engagement, position the project as a critical driver of innovation in NMs SbD methodologies and in the development and implementation of computational nanosafety.
Elsevier
2025
The complex and dynamic nature of airborne fine particulate matter (PM2.5) has hindered understanding of its chemical composition, sources, and toxic effects. In the first steps of a larger study, here, we aimed to elucidate relationships between source regions, ambient conditions, and the chemical composition in water extracts of PM2.5 samples (n = 85) collected over 16 months at an observatory in the Yellow Sea. In each extract, we quantified elements and major ions and profiled the complex mixtures of organic compounds by nontarget mass spectrometry. More than 50,000 nontarget features were detected, and by consensus of in silico tools, we assigned a molecular formula to 13,907 features. Oxygenated compounds were most prominent, followed by mixed nitrogenated/oxygenated compounds, organic sulfates, and sulfonates. Spectral matching enabled identification or structural annotation of 43 substances, and a workflow involving SIRIUS and MS-DIAL software enabled annotation of 74 unknown per- and polyfluoroalkyl substances with primary source regions in China and the Korean Peninsula. Multivariate modeling revealed seasonal variations in chemistry, attributable to the combination of warmer temperatures and maritime source regions in summer and to cooler temperatures and source regions of China in winter.
2025
2025
Intrusion Detection Systems (IDS) are critical in safeguarding network infrastructures against malicious attacks. Traditional IDSs often struggle with knowledge representation, real-time detection, and accuracy, especially when dealing with high-throughput data. This paper proposes a novel IDS framework that leverages machine learning models, streaming data, and semantic knowledge representation to enhance intrusion detection accuracy and scalability. Additionally, the study incorporates the concept of Digital Sovereignty, ensuring that data control, security, and privacy are maintained according to national and regional regulations. The proposed system integrates Apache Kafka for real-time data processing, an automatic machine learning pipeline (e.g., Tree-based Pipeline Optimization Tool (TPOT)) for classifying network traffic, and OWL-based semantic reasoning for advanced threat detection. The proposed system, evaluated on NSL-KDD and CIC-IDS-2017 datasets, demonstrated qualitative outcomes such as local compliance, reduced data storage needs due to real-time processing, and improved adaptability to local data laws. Experimental results reveal significant improvements in detection accuracy, processing efficiency, and Sovereignty alignment.
Elsevier
2025
Methane in Svalbard (SvalGaSess)
Methane is a powerful greenhouse gas whose emission into the atmosphere from Arctic environments is increasing in response to climate change. At present, the increase in atmospheric methane concentrations recorded at Ny-Ålesund and globally threatens the Paris Agreement goal of limiting warming to 2 degrees, preferably 1.5 degrees, by increasing the need for abatements. However, our understanding of the physical, chemical and biological processes that control methane in the Arctic are strongly biased towards just a few lowland sites that are not at all like Svalbard and other similar mountainous, ice-covered regions. Svalbard can therefore be used to better understand these locations. Svalbard’s methane stocks include vast reserves of ancient, geogenic methane trapped beneath glaciers and permafrost. This methane supplements the younger, microbial methane mostly produced in waterlogged soils and wetlands during the summer and early winter. Knowledge about the production, removal and migration of these two methane sources in Svalbard’s complex landscapes and coastal environments has grown rapidly in recent years. However, the need to exploit this knowledge to produce reliable estimates of present-day and future emissions of methane from across the Svalbard landscape is now paramount. This is because understanding these quantities is absolutely necessary when we seek to define how society must adjust in order to better manage greenhouse gases in Earth’s atmosphere
2025
2025