Fant 9890 publikasjoner. Viser side 71 av 396:
A comprehensive European dataset on monthly atmospheric NH3, acid gases (HNO3, SO2, HCl), and aerosols (NH+4, NO−3, SO2−4, Cl−, Na+, Ca2+, Mg2+) is presented and analysed. Speciated measurements were made with a low-volume denuder and filter pack method (DEnuder for Long-Term Atmospheric sampling, DELTA®) as part of the EU NitroEurope (NEU) integrated project. Altogether, there were 64 sites in 20 countries (2006–2010), coordinated between seven European laboratories. Bulk wet-deposition measurements were carried out at 16 co-located sites (2008–2010). Inter-comparisons of chemical analysis and DELTA® measurements allowed an assessment of comparability between laboratories.
The form and concentrations of the different gas and aerosol components measured varied between individual sites and grouped sites according to country, European regions, and four main ecosystem types (crops, grassland, forests, and semi-natural). The smallest concentrations (with the exception of SO2−4 and Na+) were in northern Europe (Scandinavia), with broad elevations of all components across other regions. SO2 concentrations were highest in central and eastern Europe, with larger SO2 emissions, but particulate SO2−4 concentrations were more homogeneous between regions. Gas-phase NH3 was the most abundant single measured component at the majority of sites, with the largest variability in concentrations across the network. The largest concentrations of NH3, NH+4, and NO−3 were at cropland sites in intensively managed agricultural areas (e.g. Borgo Cioffi in Italy), and the smallest were at remote semi-natural and forest sites (e.g. Lompolojänkkä, Finland), highlighting the potential for NH3 to drive the formation of both NH+4 and NO−3 aerosol. In the aerosol phase, NH+4 was highly correlated with both NO−3 and SO2−4, with a near-1:1 relationship between the equivalent concentrations of NH+4 and sum (NO−3+ SO2−4),of which around 60 % was as NH4NO3.
Distinct seasonality was also observed in the data, influenced by changes in emissions, chemical interactions, and the influence of meteorology on partitioning between the main inorganic gases and aerosol species. Springtime maxima in NH3 were attributed to the main period of manure spreading, while the peak in summer and trough in winter were linked to the influence of temperature and rainfall on emissions, deposition, and gas–aerosol-phase equilibrium. Seasonality in SO2 was mainly driven by emissions (combustion), with concentrations peaking in winter, except in southern Europe, where the peak occurred in summer. Particulate SO2−4 showed large peaks in concentrations in summer in southern and eastern Europe, contrasting with much smaller peaks occurring in early spring in other regions. The peaks in particulate SO2−4 coincided with peaks in NH3 concentrations, attributed to the formation of the stable (NH4)2SO4. HNO3 concentrations were more complex, related to traffic and industrial emissions, photochemistry, and HNO3:NH4NO3 partitioning. While HNO3 concentrations were seen to peak in the summer in eastern and southern Europe (increased photochemistry), the absence of a spring peak in HNO3 in all regions may be explained by the depletion of HNO3 through reaction with surplus NH3 to form the semi-volatile aerosol NH4NO3. Cooler, wetter conditions in early spring favour the formation and persistence of NH4NO3 in the aerosol phase, consistent with the higher springtime concentrations of NH+4 and NO−3. The seasonal profile of NO−3 was mirrored by NH+4, illustrating the influence of gas–aerosol partitioning of NH4NO3 in the seasonality of these components.
Gas-phase NH3 and aerosol NH4NO3 were the dominant species in the total inorganic gas and aerosol species measured in the NEU network. With the current and projected trends in SO2, NOx, and NH3 emissions, concentrations of NH3 and NH4NO3 can be expected to continue to dominate...
2021
Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons
Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b (CH2ClCClF2), which is newly discovered in the atmosphere, and updated results for HCFC-133a (CH2ClCF3) and HCFC-31 (CH2ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y−1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016–2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y−1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y−1. Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.
2021
DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population
Elsevier
2021
Changes in black carbon emissions over Europe due to COVID-19 lockdowns
Following the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China) and its spread to the rest of the world, the World Health Organization declared a global pandemic in March 2020. Without effective treatment in the initial pandemic phase, social distancing and mandatory quarantines were introduced as the only available preventative measure. In contrast to the detrimental societal impacts, air quality improved in all countries in which strict lockdowns were applied, due to lower pollutant emissions. Here we investigate the effects of the COVID-19 lockdowns in Europe on ambient black carbon (BC), which affects climate and damages health, using in situ observations from 17 European stations in a Bayesian inversion framework. BC emissions declined by 23 kt in Europe (20 % in Italy, 40 % in Germany, 34 % in Spain, 22 % in France) during lockdowns compared to the same period in the previous 5 years, which is partially attributed to COVID-19 measures. BC temporal variation in the countries enduring the most drastic restrictions showed the most distinct lockdown impacts. Increased particle light absorption in the beginning of the lockdown, confirmed by assimilated satellite and remote sensing data, suggests residential combustion was the dominant BC source. Accordingly, in central and Eastern Europe, which experienced lower than average temperatures, BC was elevated compared to the previous 5 years. Nevertheless, an average decrease of 11 % was seen for the whole of Europe compared to the start of the lockdown period, with the highest peaks in France (42 %), Germany (21 %), UK (13 %), Spain (11 %) and Italy (8 %). Such a decrease was not seen in the previous years, which also confirms the impact of COVID-19 on the European emissions of BC.
2021
Målinger av PM10 i Lohavn. April og mai 2020.
NILU – Norsk institutt for luftforskning har på oppdrag fra HAV Eiendom utført målinger av svevestøv (PM10) i Lohavn i Oslo. Området skal utvikles til et nytt byområde med boliger, skole, utearealer og næring. PM-konsentrasjonen ble målt på tre steder i Lohavn for å kartlegge svevestøvkonsentrasjonen og mulige kilder. Måleprosjektet pågikk våren 2020. Mulige effekter av Covid-nedstengning, variasjoner i trafikkmengden i området og variasjoner av meteorologiske parametere på PM-konsentrasjonen er diskutert.
Måleresultatene viser lavere PM-konsentrasjon enn i måleperioden 2016/17. Årsaken var trolig bortfall av midlertidige kilder som førte til periodevis høye konsentrasjoner i 2016/17. De høyeste PM10-konsentrasjonene ble observert ved vind fra sør-sørvest (som dominerer på dagtid).
NILU
2021
2021
The report holds a comprehensive literature review on the non-exhaust PM emission from transport. All types of wear particles are considered (brake, tyre, road surface) and all modes (road, rail, aviation), with strong emphasis on road. The report serves as an input to review current emission inventories, summarizing the current emission estimates, the estimation methodologies, uncertainties and future trends, briefly zooming in on the relevance of electric vehicles. The report considers both air quality as well as the relevance of non-exhaust emission as a source of microplastics. To conclude, the report includes a brief overview of technological and policy options to reduce the environmental impact.
ETC/ATNI
2021
The report provides the annual update of the European air quality concentration maps and population exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, SOMO35, SOMO10) and NO2 (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2018. The report contains also Phytotoxic ozone dose (POD) for wheat and potato maps and NOx annual average maps for 2018. The POD maps are presented for the first time in this regular mapping report. The trends in exposure estimates in the period 2005-2018 are summarized. The analysis is based on interpolation of annual statistics of the 2018 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database. The mapping method is the Regression – Interpolation – Merging Mapping. It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps.
ETC/ATNI
2021
Svalbard Integrated Arctic Earth Observing System (SIOS) is an international partnership of research institutions studying the environment and climate in and around Svalbard. SIOS is developing an efficient observing system, where researchers share technology, experience, and data, work together to close knowledge gaps, and decrease the environmental footprint of science. SIOS maintains and facilitates various scientific activities such as the State of the Environmental Science in Svalbard (SESS) report, international access to research infrastructure in Svalbard, Earth observation and remote sensing services, training courses for the Arctic science community, and open access to data. This perspective paper highlights the activities of SIOS Knowledge Centre, the central hub of SIOS, and the SIOS Remote Sensing Working Group (RSWG) in response to the unprecedented situation imposed by the global pandemic coronavirus (SARS-CoV-2) disease 2019 (COVID-19). The pandemic has affected Svalbard research in several ways. When Norway declared a nationwide lockdown to decrease the rate of spread of the COVID-19 in the community, even more strict measures were taken to protect the Svalbard community from the potential spread of the disease. Due to the lockdown, travel restrictions, and quarantine regulations declared by many nations, most physical meetings, training courses, conferences, and workshops worldwide were cancelled by the first week of March 2020. The resumption of physical scientific meetings is still uncertain in the foreseeable future. Additionally, field campaigns to polar regions, including Svalbard, were and remain severely affected. In response to this changing situation, SIOS initiated several operational activities suitable to mitigate the new challenges resulting from the pandemic. This article provides an extensive overview of SIOS’s Earth observation (EO), remote sensing (RS) and other operational activities strengthened and developed in response to COVID-19 to support the Svalbard scientific community in times of cancelled/postponed field campaigns in Svalbard. These include (1) an initiative to patch up field data (in situ) with RS observations, (2) a logistics sharing notice board for effective coordinating field activities in the pandemic times, (3) a monthly webinar series and panel discussion on EO talks, (4) an online conference on EO and RS, (5) the SIOS’s special issue in the Remote Sensing (MDPI) journal, (6) the conversion of a terrestrial remote sensing training course into an online edition, and (7) the announcement of opportunity (AO) in airborne remote sensing for filling the data gaps using aerial imagery and hyperspectral data. As SIOS is a consortium of 24 research institutions from 9 nations, this paper also presents an extensive overview of the activities from a few research institutes in pandemic times and highlights our upcoming activities for the next year 2021. Finally, we provide a critical perspective on our overall response, possible broader impacts, relevance to other observing systems, and future directions. We hope that our practical services, experiences, and activities implemented in these difficult times will motivate other similar monitoring programs and observing systems when responding to future challenging situations. With a broad scientific audience in mind, we present our perspective paper on activities in Svalbard as a case study.
Earth observation; Remote sensing; COVID-19; Svalbard; Earth System Science; SIOS
MDPI
2021
2021
This report presents a review of data assimilation methods applicable to air quality. In the introduction, we first describe a brief history of data assimilation method development in the context of numerical weather prediction (NWP), and then we highlight key differences when applying data assimilation methods to air quality prediction from NWP applications. Based on these differences, we outline a set of key requirements for data assimilation when applied to air quality. Following this, we review the available data assimilation algorithms and attempt to identify suitable data assimilation methods that could be applied with air quality models. This review and its findings form the basis of the developments to be carried out in the Urban Data Assimilation Systems project.
NILU
2021
Using the Super Dual Auroral Radar Network observations (clustered around 60°N) and NCAR CESM2.0 extended Whole Atmosphere Community Climate Model nudged with reanalyzes, we examine the climatology of semidiurnal tides in meridional wind associated with the migrating component (SW2) and non‐migrating components of wavenumbers 1 (SW1) and 3 (SW3). We then illustrate their composite response to major sudden stratospheric warmings (SSWs). Peaking in late summer and winter, the climatological SW2 amplitude exceeds SW1 and SW3 except around late Fall and Spring. The winter climatological peak is absent in the model perhaps due to the zonal wind bias at the observed altitudes. The observed SW2 amplitude declines after SSW onset before enhancing ∼10 days later, along with SW1 and SW3. Within the observed region, the simulated SW2 only amplifies after SSW onset, with minimal SW1 and SW3 responses. The model reveals a stronger SW2 response above the observed location, with diminished amplitude before and enhancement after SSW globally. This enhancement appears related to increased equatorial ozone heating and background wind symmetry. The strongest SW1 and SW3 growth occurs in the Southern Hemisphere before SSW. SW2 and quasi‐stationary planetary wave activities are temporally collocated during SSW suggesting that their interactions excite SW1 and SW3. After SSW, the model also reveals (1) semidiurnal‐tide‐like perturbations generated possibly by the interactions between SW2 and westward‐traveling disturbances and (2) the enhancement of migrating semidiurnal lunar tide in the Northern Hemisphere that exceeds non‐migrating tidal and semidiurnal‐tide‐like responses. The simulated eastward‐propagating semidiurnal tides are briefly examined.
American Geophysical Union (AGU)
2021
Royal Society of Chemistry (RSC)
2021
- Aukra, Harøya, Fræna, Møre & Romsdal fylke, Ormen Lange
- Oljeindustri, prosessanlegg, miljøovervåking
- Luftforurensing, nitrogengjødsling, eutrofiering, forsuring
- Vegetasjon, artssammensetning, nedbørsmyr, kystlynghei
- Plantekjemi, jordanalyser, jordvannanalyser, tungmetaller, gjenanalyserAukra, Harøya, Fræna, Møre & Romsdal county, Ormen Lange
- Oil industry, process plant, environmental monitoring
- Air pollution, nitrogen fertilization, eutrophication, acidification
- Vegetation, species composition, bogs, heathland
- Plant chemistry, soil analyses, ground water analyses, heavy
metals, re-analyses
Norsk institutt for naturforskning (NINA)
2021
Method for high resolution emission estimations from construction sites. Phase I: Mapping input data
This report presents the results from exploring the available input data to develop a model for estimating air pollutants and GHG-emissions based on a bottom-up approach, including both exhaust and non-exhaust emissions. The availability of
reliable input data is the limiting factor and the most critical part of designing such a bottom-up approach. In this study, we have focussed on assessing input data that allow defining; i) the exact location and area affected during building and construction; ii) the starting and finalization dates; iii) the type of construction activity; iv) the non-road mobile machinery (NRMM) activity within building and construction; v) roads in the vicinity of construction sites.
NILU
2021
Evaluation and optimization of ICOS atmosphere station data as part of the labeling process
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmosphere network through the 23 stations that were labeled between November 2017 and November 2019. We describe the labeling steps, as well as the quality controls, used to verify that the ICOS data (CO2, CH4, CO and meteorological measurements) attain the expected quality level defined within ICOS. To ensure the quality of the greenhouse gas data, three to four calibration gases and two target gases are measured: one target two to three times a day, the other gases twice a month. The data are verified on a weekly basis, and tests on the station sampling lines are performed twice a year. From these high-quality data, we conclude that regular calibrations of the CO2, CH4 and CO analyzers used here (twice a month) are important in particular for carbon monoxide (CO) due to the analyzer's variability and that reducing the number of calibration injections (from four to three) in a calibration sequence is possible, saving gas and extending the calibration gas lifespan. We also show that currently, the on-site water vapor correction test does not deliver quantitative results possibly due to environmental factors. Thus the use of a drying system is strongly recommended. Finally, the mandatory regular intake line tests are shown to be useful in detecting artifacts and leaks, as shown here via three different examples at the stations.
2021
In this paper, the effect of the lockdown measures on nitrogen dioxide (NO2) in Europe is analysed by a statistical model approach based on a generalised additive model (GAM). The GAM is designed to find relationships between various meteorological parameters and temporal metrics (day of week, season, etc.) on the one hand and the level of pollutants on the other. The model is first trained on measurement data from almost 2000 monitoring stations during 2015–2019 and then applied to the same stations in 2020, providing predictions of expected concentrations in the absence of a lockdown. The difference between the modelled levels and the actual measurements from 2020 is used to calculate the impact of the lockdown measures adjusted for confounding effects, such as meteorology and temporal trends. The study is focused on April 2020, the month with the strongest reductions in NO2, as well as on the gradual recovery until the end of July. Significant differences between the countries are identified, with the largest NO2 reductions in Spain, France, Italy, Great Britain and Portugal and the smallest in eastern countries (Poland and Hungary). The model is found to perform best for urban and suburban sites. A comparison between the found relative changes in urban surface NO2 data during the lockdown and the corresponding changes in tropospheric vertical NO2 column density as observed by the TROPOMI instrument on Sentinel-5P revealed good agreement despite substantial differences in the observing method.
MDPI
2021
Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening
Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal‐free risk assessment of new chemicals and drugs. Microfluidic cell‐based devices allow high‐throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal‐free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo‐like in vitro cell cultivation. It is equipped with a wafer‐based silicon chip including integrated electrodes and a microcavity. A proof‐of‐concept using different relevant cell models shows its suitability for label‐free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label‐free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole‐body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.
Wiley-VCH
2021
Fluorescent Nanocomposites: Hollow Silica Microspheres with Embedded Carbon Dots
Intrinsically fluorescent carbon dots may form the basis for a safer and more accurate sensor technology for digital counting in bioanalytical assays. This work presents a simple and inexpensive synthesis method for producing fluorescent carbon dots embedded in hollow silica particles. Hydrothermal treatment at low temperature (160 °C) of microporous silica particles in presence of urea and citric acid results in fluorescent, microporous and hollow nanocomposites with a surface area of 12 m2/g. High absolute zeta potential (−44 mV) at neutral pH demonstrates the high electrosteric stability of the nanocomposites in aqueous solution. Their fluorescence emission at 445 nm is remarkably stable in aqueous dispersion under a wide pH range (3–12) and in the dried state. The biocompatibility of the composite particles is excellent, as the particles were found to show low genotoxicity at exposures up to 10 μg/cm2.
Wiley-VCH
2021
Concerns have been raised as to whether gunshot fumes induce prolonged reduced lung capacity or even cancer due to inhalation. Gunshot fumes from three different types of ammunition calibre 5.56 mm × 45 NATO were investigated. SS109 has a soft lead (Pb) core, while NM255 and NM229 have a harder steel core. Emissions from ammunitions were characterized with respect to particle number- and mass-size, and mass distribution, heavy metal content, and different gases. Lung epithelial cells were exposed to the fumes at the air liquid interface to elucidate cytotoxicity and genotoxicity. Irrespectively of ammunition type, the largest mass fraction of generated particulate matter (PM) had a size between 1 and 3 μm. The highest number of particles generated was in the size range of 30 nm. Fumes from NM255 and NM229 induced cytotoxic effects of which the emission from NM229 induced the highest effect. Fumes from NM229 induced a dose-related increase in DNA-damage. Significant effects were only achieved at the highest exposure level, which led to approximately 40% reduced cell viability after 24 h. The effect probably relates to the mass of emitted particles where the size may be of importance, in addition to emission of Cu and Zn. A complex mixture of chemical substances and PM may increase the toxicity of the fumes and should encourage measures to reduce exposure.
Elsevier
2021