Fant 9850 publikasjoner. Viser side 107 av 394:
2025
2020
2005
Effekt av lavutslippssoner på luftkvaliteten i Oslo. Utslipps- og spredningsberegninger. NILU rapport
2016
Effekt av strakstiltak på dager med høy luftforurensning og effekt for NO2. NILU OR
NILU og Urbanet Analyse AS har på oppdrag fra Vegdirektoratet vurdert effekten av noen eksempler på strakstiltak med hensyn på å redusere NO2-konsentrasjonene på dager med høy luftforurensning.
2015
Effekter av klima og klimaendringer på den bygde kulturarven. Nedbrytningsmekanismer og sårbarhet. NILU OR
2008
2005
2007
EIF-air. Environmental Impact Factor for assessment of emissions to air. Summary report. NIVA report, 5098-2005
2005
2004
2004
2016
Eksponeringsutvikling av lokal luftkvalitet i Oslo. Anvendelse av AirQUIS. Powerpoint-presentasjon. NILU F
2003
Carbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modification processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased kinetics of acetaminophen degradation in aqueous environments. The utilised oxidation techniques deliver single-step, straightforward, eco-friendly, and stable physiochemical reformation of carbon felt surfaces. The modifications caused minor changes in both the specific surface area and total pore volume corresponding with the surface morphology.
A pristine carbon felt electrode was capable of decomposing up to 70% of the acetaminophen in a 240 min electrolysis process, while the oxygen-plasma treated electrode achieved a removal yield of 99.9% estimated utilising HPLC-UV-Vis. Here, the electro-induced incineration kinetics of acetaminophen resulted in a rate constant of 1.54 h−1, with the second-best result of 0.59 h−1 after oxidation in 30% H2O2. The kinetics of acetaminophen removal was synergistically studied by spectroscopic and electrochemical techniques, revealing various reaction pathways attributed to the formation of intermediate compounds such as p-aminophenol and others.
The enhancement of the electrochemical oxidation rates towards acetaminophen was attributed to the appearance of surface carbonyl species. Our results indicate that the best-performing plasma-chemical treated CFE follows a heterogeneous mechanism with only approx. 40% removal due to direct electro-oxidation. The degradation mechanism of acetaminophen at the treated carbon felt anodes was proposed based on the detected intermediate products. Estimation of the cost-effectiveness of removal processes, in terms of energy consumption, was also elaborated. Although the study was focussed on acetaminophen, the achieved results could be adapted to also process emerging, hazardous pollutant groups such as anti-inflammatory pharmaceuticals.
Pergamon Press
2022