Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9758 publikasjoner. Viser side 111 av 391:

Publikasjon  
År  
Kategori

Polychloropinene - toxaphene analog produced in the USSR was non-racemic.

Nikiforov, V.; Kryuchkov, F.; Sandanger, T.; Kallenborn, R.; Jensen, E.

2009

Polychlorinated naphthalenes in air and snow in the Norwegian Arctic: a local source or an Eastern Arctic phenomenon?

Herbert, B.M.J.; Halsall, C.J.; Villa, S.; Fitzpatrick, L.; Jones, K.C.; Lee, R.G.M.; Kallenborn, R.

2005

Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes: a comprehensive review combined with ArcRisk project results

Carlsson, Pernilla; Breivik, Knut; Brorström-Lundén, Eva; Cousins, Ian; Christensen, Jesper; Grimalt, Joan O.; Halsall, Crispin; Kallenborn, Roland; Abass, Khaled; Lammel, Gerhard; Munthe, John; MacLeod, Matthew; Odland, Jon Øyvind; Pawlak, Janet; Rautio, Arja; Reiersen, Lars-Otto; Schlabach, Martin; Stemmler, Irene; Wilson, Simon; Wöhrnschimmel, Henry

Polychlorinated biphenyls (PCBs) can be used as chemical sentinels for the assessment of anthropogenic influences on Arctic environmental change. We present an overview of studies on PCBs in the Arctic and combine these with the findings from ArcRisk—a major European Union-funded project aimed at examining the effects of climate change on the transport of contaminants to and their behaviour of in the Arctic—to provide a case study on the behaviour and impact of PCBs over time in the Arctic. PCBs in the Arctic have shown declining trends in the environment over the last few decades. Atmospheric long-range transport from secondary and primary sources is the major input of PCBs to the Arctic region. Modelling of the atmospheric PCB composition and behaviour showed some increases in environmental concentrations in a warmerArctic, but the general decline in
PCB levels is still the most prominent feature. ‘Within-Arctic’ processing of PCBs will be affected by climate change-related processes such as changing wet deposition. These in turn will influence biological exposure and uptake of PCBs. The pan-Arctic rivers draining large Arctic/sub-Arctic catchments provide a significant source of PCBs to the Arctic Ocean, although changes in hydrology/sediment transport combined with a changing marine environment remain areas of uncertainty with regard to PCB fate. Indirect effects of climate change on human exposure, such as a changing diet will influence and possibly reduce PCB
exposure for indigenous peoples. Body burdens of PCBs have declined since the 1980s and are predicted to decline further.

2018

Polychlorinated biphenyl exposure and corticosterone levels in seven polar seabird species.

Tartu, S.; Angelier, F.; Bustnes, J.O.; Moe, B.; Hanssen,S.A.; Herzke, D.; Gabrielsen, G.W.; Verboven, N.; Verreault, J.; Labadie, P.; Budzinski, H.; Wingfield, J.C.; Chastel, O.

2015

Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures

Ezker, Idoia Beloki; Yuan, Bo; Bohlin-Nizzetto, Pernilla; Borgen, Anders; Wang, Thanh

Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10–13), medium-chain (MCCPs, C14–17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs–C10–13 are found to be mostly present in the gas phase, PCAs–C14–17 in particulate matter and organic films, and PCAs–C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.

Elsevier

2024

Polychlorinated alkanes in freshwater fish. NILU F

Borgen, A.R.; Schlabach, M.; Fjeld, E.; Kallenborn, R.

2001

Polychlorinated alkanes in Arctic air. Organohalogen compounds

Borgen, A.R.; Schlabach, M.; Gundersen, H.

2000

Polychlorinated alkanes in ambient air from Bear Island.

Borgen, A.R.; Schlabach, M.; Kallenborn, R.; Christensen, G.; Skotvold, T.

2002

Polybrominated diphenylethers in biota from Bjørnøya (Bear Island). NILU PP

Herzke, D.; Evenset, A.; Christensen, G.N.; Kallenborn, R.

2004

Polybrominated diphenyl ethers in type 2 diabetes mellitus cases and controls: Repeated measurements prior to and after diagnosis

Charles, Dolley; Berg, Vivian; Nøst, Therese Haugdahl; Wilsgaard, Tom; Bergdahl, Ingvar A.; Huber, Sandra; Ayotte, Pierre; Averina, Maria; Sandanger, Torkjel M; Rylander, Karin Charlotta Maria

Urban & Fischer

2023

Polybromerte difenyletere i Åsefjorden.

Bakke, M.; Haukås, M.; Gjengedal, E.; Borgen, A.; Mariussen, E.

2008

Poly- and perfluoroalkyl substances (PFASs) as local Arctic pollutants: Svalbard as case study.

Kallenborn, Roland; Langberg, Håkon Austad; Breedveld, Gijs D.; Hale, Sarah; Skaar, Jøran Solnes

2020

Poly- and Perfluoroalkyl Substances (PFAS) in a Firn Core From Austfonna, Svalbard

Hermanson, Mark H.; Isaksson, Elisabeth; Eckhardt, Sabine; Gabrielsen, Geir W.

2022

Publikasjon
År
Kategori