Fant 9758 publikasjoner. Viser side 139 av 391:
2006
2015
2015
2016
On the coupling between polar and tropical regions during springtime: variability of tropical intrusion and Frozen In Anticyclones. Poster P-1108-04
Abstract : Recent observational and modeling transport studies of Arctic stratospheric final warming have shown that tropical/subtropical air masses can be transported to high latitudes and remain confined within a long-lived ¿frozen- in¿ anticyclone (FriaC), embedded in the summer easterlies for several months. We first present a climatology of these sporadic events over the period 1960-2011 using era-40 and era interim reanalyses. this study highlights stratospheric favorable preconditioning for FrIACs occurrence, that is: i) early and abrupt final warming, ii) no stratospheric major warming during the previous winter, and iii) east phase of the Quasi-Biennial Oscillation. We will present in detail the FriaC in spring 2011, which was the largest ever recorded. Our climatology further suggests that the frequency of occurrence of FriaCs has increased over the last decade (among the nine cases detected over the period 1960- 2011, five occurred between 2002 and 2011). A chemistry climate model is then used for the first time to investigate FriaCs characteristics and variability. simulations were performed with the nCar¿s Community earth system Model (CesM, version 1.0.2), a coupled model system including the Whole Atmosphere Community Climate Model (WACCM). FrIACs characteristics (i.e. spatial extent and duration), are overall consistent by comparing with FriaCs detected era-40 meteorological reanalyses. Dynamical analysis reveals that FriaCs are associated with an abrupt and early winter-to-summer stratospheric circulation transition, characterized by an amplification of planetary wave activity. Furthermore, our model results confirm that FrIACs occur preferentially under the easterly phase of the QBO and in absence of MSW during the preceding
2015
2020
2019
2016
2013
2002
2013
2009
2017
2009
On coarse patterns in the atmospheric concentration of ice nucleating particles
The atmospheric concentration of ice nucleating particles active at around −10 °C (INP−10) is very low. Nevertheless, these particles play a role in the development of cloud systems, so their spatial and temporal patterns merit attention. We collated available datasets on INP−10 to identify such patterns. Among the five low altitude observatories in northern Eurasia, median values throughout May to October were lowest in Scandinavia (4 and 6 m−3), somewhat higher in central Europe (11 m−3), substantially higher in the West Siberian Plain (69 m−3) and highest in the Central Yakutian Lowland (204 m−3), suggesting that the abundance of INP−10 in northern Eurasia may increase with continentality and from West to East. The range of values at the same observatories was narrower throughout November to April (2 to 27 m−3). On average, by an order of magnitude smaller values were reported for the four Arctic observatories. Consequently, increasing poleward transport of air masses from the midlatitudes likely raises the concentration of INP−10 in the Arctic, particularly when air masses had surface contact in eastern parts of northern Eurasia.
Elsevier
2023
2017
På oppdrag fra Alcoa Norway AS dept. Mosjøen har NILU utført målinger i omgivelses-luft rundt smelteverket i Mosjøen. Målingene ble utført med aktiv prøvetaking (fluor, SO2, metaller, PAH, PM10) og passiv prøvetaking (SO2, støvnedfall). Måleprosjektet ble utført i perioden 22. mai – 19. august 2024. Alle målte komponenter var godt under de individuelle grenseverdier, målsettingsverdier og luftkvalitetskriterier i måleperioden. Siden Mosjøen er mest utsatt for utslipp fra aluminiumsverket i sommermånedene, pga. hovedvindretning fra fjorden, over smelteverket mot byen, blir måleresultatene et øvre anslag for bidraget fra smelteverket til konsentrasjonene i Mosjøen over hele året.
NILU
2025
2015
The global monitoring plan of the Minamata Convention on Mercury was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After 25 years of monitoring (since 1995), Mace Head is one of the atmospheric monitoring stations with the longest mercury record and has produced sufficient data for the analysis of temporal trends of total gaseous mercury (TGM) in Europe and the North Atlantic. Using concentration-weighted trajectories for atmospheric mercury measured at Mace Head as well as another five locations in Europe, Amderma, Andøya, Villum, Waldhof and Zeppelin, we identify the regional probabilistic source contribution factor and its changes for the period of 1996 to 2019. Temporal trends indicate that concentrations of mercury in the atmosphere in Europe and the North Atlantic have declined significantly over the past 25 years at a non-monotonic rate averaging 0.03 . Concentrations of TGM at remote marine sites were shown to be affected by continental long-range transport, and evaluation of reanalysis back trajectories displays a significant decrease in TGM in continental air masses from Europe in the last 2 decades. In addition, using the relationship between mercury and other atmospheric trace gases that could serve as a source signature, we perform factorization regression analysis, based on positive rotatable factorization to solve probabilistic mass functions. We reconstructed atmospheric mercury concentration and assessed the contribution of the major natural and anthropogenic sources. The results reveal that the observed downward trend in the atmospheric mercury is mainly associated with a factor with a high load of long-lived anthropogenic species.
2022
2015