Fant 9759 publikasjoner. Viser side 291 av 391:
2018
2018
2018
2018
Is crumb rubber a source for pollutants and harmful effects in the marine environment?
In Norwegian coastal communities, rubber microplastic granules (≤ 5 mm in size) derived from discarded vehicle tires are used in large quantities on outdoor synthetic turf sports pitches. Through transport by waste water effluents and terrestrial runoff, these rubber particles are considered a significant source of MPs to the marine ecosystem. In the here presented interdisciplinary project we study the composition, degradation and environmental impacts of these rubber granules from locations in northern Norway and Svalbard. Their persistence and residence time in the Arctic marine environment is unknown. These rubber particles pose a potential health risk for arctic wild life through direct ingestion, especially at the base of the marine food chain, but may also provide an exposure route for toxic additive chemicals present in tires to marine organisms. Furthermore, the rubber particles may act as a vector for other persistent organic and heavy metal pollutants already present in the marine environment. Arctic marine environments present special abiotic conditions for the degradation of these particles, with cold water temperatures and long periods with unlimited sunlight. During a 12 months period, rubber crumbs were placed out in the ocean in stainless steel containers and sub-sampled continuously for the measurement of persistent organic pollutants, metals and additives. Hydrophobic persistent organic pollutants such as PAHs, PCBs, DDTs, bisphenols, as well as metals were measured to establish the adsorption and leaching kinetics in seawater under in situ conditions. Samples were extracted using ultrasound and nonpolar solvents, followed by GPC and SPE clean up. Chemical analyses using pyroGC/MS, GC/MS/MS and LC/HRMS were done in the laboratories of NILU, Tromsø and SINTEF, Trondheim. Exposure experiments with rubber leachate were also conducted and high mortality rates were found for different marine zooplankton species.
2018
2018
2019
2019
Review of the Assessment of Industrial Emissions with Mosses
På oppdrag fra Miljødirektoratet har NILU - Norsk institutt for luftforskning, gjort en litteraturstudie innenfor temaet
«Vurdering av industriutslipp ved bruk av mose». Hensikten er å framskaffe en oversikt over hva som er publisert av kunnskap om eventuelle sammenhenger mellom metallkonsentrasjoner målt i mose og utslippsmengder, luftkvalitet, opptak i andre
organismer og betydning for miljø og helse. Det er i tillegg etterspurt informasjon om hvorvidt andre land benytter
moseundersøkelse rundt industri og eventuelt hvordan disse resultatene blir brukt av myndigheter. Litteratursøket resulterte i 51 relevante publikasjoner hvor de fleste er fra perioden 2016-2019. Resultatene fra disse publikasjonene viser at mose er en god passiv prøvetaket for luftforurensinger og kan gi verdifull informasjon om kjemisk signatur og deposisjon av metaller. Det er ikke funnet noen studier som relaterer konsentrasjon i mose med luftkvalitet eller mengde utslipp fra utvalgte industrier. En enkelt studie forsøker å sette mosekonsentrasjoner i sammenheng med helseeffekter. En spørreundersøkelse blant deltakerland i ICP-Vegetation viser at resultater fra moseundersøkelser så langt ikke er benyttet av myndigheter i reguleringssammenheng eller lovgivning.
NILU
2019
SESS report 2018. The State of Environmental Science in Svalbard – an annual report.
Svalbard Integrated Arctic Earth Observing System (SIOS)
2019
Air Quality in Ny-Ålesund. Monitoring of Local Air Quality 2018.
De målte konsentrasjonene var generelt lave for alle komponenter og under nasjonale grenseverdier for beskyttelse av menneskets helse og økosystemet.Vind fra nordlige sektorer ga de høyeste gjennomsnittskonsentrasjonene av nitrogenoksider og svoveldioksid, noe som peker på kraftstasjonen og havnen som mulige kilder. Måleresultatene for CO2 viser en årlig variasjon, med høyere konsentrasjoner om vinteren og lavere om sommeren. Kilder for de målte konsentrasjonene av CO var mest sannsynlig lokal snøskutertrafikk.
NILU
2019
2019
We present here emissions estimated from a newly developed emission model for residential wood combustion (RWC) at high spatial and temporal resolution, which we name the MetVed model. The model estimates hourly emissions resolved on a 250 m grid resolution for several compounds, including particulate matter (PM), black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) in Norway for a 12-year period. The model uses novel input data and calculation methods that combine databases built with an unprecedented high level of detail and near-national coverage. The model establishes wood burning potential at the grid based on the dependencies between variables that influence emissions: i.e. outdoor temperature, number of and type and size of dwellings, type of available heating technologies, distribution of wood-based heating installations and their associated emission factors. RWC activity with a 1 h temporal profile was produced by combining heating degree day and hourly and weekday activity profiles reported by wood consumers in official statistics. This approach results in an improved characterisation of the spatio-temporal distribution of wood use, and subsequently of emissions, required for urban air quality assessments. Whereas most variables are calculated based on bottom-up approaches on a 250 m spatial grid, the MetVed model is set up to use official wood consumption at the county level and then distributes consumption to individual grids proportional to the physical traits of the residences within it. MetVed combines consumption with official emission factors that makes the emissions also upward scalable from the 250 m grid to the national level.
The MetVed spatial distribution obtained was compared at the urban scale to other existing emissions at the same scale. The annual urban emissions, developed according to different spatial proxies, were found to have differences up to an order of magnitude. The MetVed total annual PM2.5 emissions in the urban domains compare well to emissions adjusted based on concentration measurements. In addition, hourly PM2.5 concentrations estimated by an Eulerian dispersion model using MetVed emissions were compared to measurements at air quality stations. Both hourly daily profiles and the seasonality of PM2.5 show a slight overestimation of PM2.5 levels. However, a comparison with black carbon from biomass burning and benzo(a)pyrene measurements indicates higher emissions during winter than that obtained by MetVed. The accuracy of urban emissions from RWC relies on the accuracy of the wood consumption (activity data), emission factors and the spatio-temporal distribution. While there are still knowledge gaps regarding emissions, MetVed represents a vast improvement in the spatial and temporal distribution of RWC.
2019
2019
2019
2019