Fant 9759 publikasjoner. Viser side 299 av 391:
2010
Review of ambient air quality monitoring programme in Poland. NILU OR
The Norwegian Institute for Air Research - NILU and the Chief Inspectorate of Environmental Protection - GIO¿ are implementing the project : 'Strengthening the air quality assessment system in Poland, based on Norwegian experience' as part of the programme ¿Improving Environmental Monitoring and Inspection¿ within the framework of the European Economic Area 2009-2014.
A part of this project is to review the existing ambient air quality monitoring programme in operation in Poland based upon the report prepared by GIOS: ¿Information on monitoring equipment used in Voivodeship networks within the National Environmental Monitoring and supplementary data providing grounds for network equipment analyses¿.
The NILU assessment confirms the needs described by GIOS to carry out an intensive monitoring of air quality, especially as regards PM10, PM2.5, benzo(a)pyrene and ozone. NILU advices GIOS to include the modelling results when evaluating the needs for expanding the network for ozone.NILU recommends to evaluate the needs for further stations in relation to securing the data capture rate as requested by the EU Directive.
In general, NILU advices GIOS towards having a more robust network that meets the Directive requirements regarding data coverage and ensures enough information for the WIOSs to do assessment and planning.
2013
Review of assessment of existing CAS/DAS, review of technical specification for CAS/DAS. NILU OR
NILU og GIOS utfører prosjektet "Strengthening the air quality assessment system in Poland, based on Norwegian experience". Denne rapporten beskriver NILUs evaluering av dagens datainnsamlingssystemer og GIOS' spesifikasjon av den nye løsningen.
2013
Review of Interpreting Gaseous Pollution Data Regarding Heritage Objects
Pollutant gases pose a significant risk to some cultural heritage objects, and surveys have shown that the professionals involved consider themselves to lack knowledge to fully assess risk. Three approaches towards risk assessment, research results, standards and damage functions have been considered. An assessment tool has been developed, collating over 4000 research reports into a scheme for the impact on 22 materials of acetic and formic acids, nitrogen dioxide, ozone and reduced sulphur gases. The application of doses or concentrations has been considered, the impact of measurement time compared to annual exposure investigated and a simple tool derived.
MDPI
2023
Review of methods that can be used in the assessment of atmospheric deposition
There are three main approaches for estimating the atmospheric deposition: 1) From measurements of air and precipitation chemistry combined with statistical interpolation, 2) Chemical transport models, 3) Combined observations and atmospheric model calculations. This report reviews these different approaches and come with some general recommendations on the different strategies and the way forward for Poland.
The report was made for the project "Strengthening of atmospheric deposition assessment in Poland based on Norwegian experience" under the program "Environment, Energy and Climate Change", financed by the European Economic Area Financial Mechanism 2014-2021".
NILU
2023
2020
This report presents the results of the European Union Action
on Black Carbon in the Arctic (EUA-BCA) initiative’s review of
observation capacities and data availability for black carbon in the Arctic region.
EUA-BCA/AMAP
2019
2004
Review of the Assessment of Industrial Emissions with Mosses
På oppdrag fra Miljødirektoratet har NILU - Norsk institutt for luftforskning, gjort en litteraturstudie innenfor temaet
«Vurdering av industriutslipp ved bruk av mose». Hensikten er å framskaffe en oversikt over hva som er publisert av kunnskap om eventuelle sammenhenger mellom metallkonsentrasjoner målt i mose og utslippsmengder, luftkvalitet, opptak i andre
organismer og betydning for miljø og helse. Det er i tillegg etterspurt informasjon om hvorvidt andre land benytter
moseundersøkelse rundt industri og eventuelt hvordan disse resultatene blir brukt av myndigheter. Litteratursøket resulterte i 51 relevante publikasjoner hvor de fleste er fra perioden 2016-2019. Resultatene fra disse publikasjonene viser at mose er en god passiv prøvetaket for luftforurensinger og kan gi verdifull informasjon om kjemisk signatur og deposisjon av metaller. Det er ikke funnet noen studier som relaterer konsentrasjon i mose med luftkvalitet eller mengde utslipp fra utvalgte industrier. En enkelt studie forsøker å sette mosekonsentrasjoner i sammenheng med helseeffekter. En spørreundersøkelse blant deltakerland i ICP-Vegetation viser at resultater fra moseundersøkelser så langt ikke er benyttet av myndigheter i reguleringssammenheng eller lovgivning.
NILU
2019
2017
Review on the methodology supporting the health impact assessment by the European Environment Agency
2020
2021
2023
2022
2023
Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.
Springer Nature
2023
Condensable primary organic aerosol (CPOA) emissions are a class of organic compounds that are vapour phase at stack conditions, but which can undergo both condensation and evaporation processes as the stack air is cooled and diluted upon discharge into ambient air. Emission factors may misrepresent, and even miss, the amount of particulate matter (PM) or gas that actually enters the atmosphere, depending on the emission measurement techniques used. In the current emission reporting to EMEP/CLRTAP there is no clear definition of whether condensable organics are included or not, and, if included, to what extent.
In this study, new residential combustion emission estimates have been made for the years 2005-2019 (called TNO Ref2_v2.1) in a consistent manner, with improved estimation of fuel consumption (in particular wood) and emission factors, as well as an updated split of fuel use over different appliances and technologies. For these two elements, data were taken primarily from the Eurostat fuel statistics and the IIASA GAINS model. Three scenarios have been defined: a “typical” case, which is our best estimate, an alternative “ideal” case which excludes the impact of “bad combustion”, and a “high EF” scenario in which higher emission factors are assumed than in the typical scenario. Total emissions in the typical scenario are around 40% higher than in the ideal case (in 2019), whereas resulting emissions in the “high EF” scenario are around 90% higher than in the typical scenario.
The Ref2_v2.1 inventory was used in a series of modelling studies which aimed to assess the importance of condensable organics for current air quality, for trends over time (2010–2019), and for source-receptor calculations.
Including condensables in a consistent way for all countries gave model results (concentrations, trends and bias) in better agreement with observations for OC and PM2.5 than when using the EMEP emissions which have condensables for some countries but not others. However, the model results were sensitive to the choice of Ref2_v2.1 scenario, and also to the assumptions concerning volatility of the CPOA emissions, and assumptions about extra intermediate-volatility volatile organic compounds (IVOC) associated with such emissions.
No single setup performed best for each site. There are many factors that can contribute to such mixed results (activity data, emissions factors, assumed combustion conditions, large and small scale spatial distributions issues in emissions, dispersion and CPOA/IVOC assumptions in the modelling), and much further work (and with other observational data-sets) will be needed to disentangle the reasons for model-measurement discrepancies, and to draw conclusions on how realistic the new emissions are.
Assumptions about volatility seem to be important for both the country-to-itself contribution, and for impacts of each country on others. In the few cases investigated so far, assuming inert CPOA provides results which generally lie within the range of the more complex VBS scenarios. Given the many uncertainties associated with the emissions and the modelling of POA and SOA, these results indicates that the inert CPOA assumptions provide a reasonable first approach for handling POA emissions, which can hopefully be improved once our understanding of the sources and processing of these compounds improves.
The new emission data-base, combined with increasing availability of measurements of organic and other components, should provide the best available basis for future improvements in both the emission inventories and model formulations. Much analysis and further tests remain, both with the other model setups, and ideally with alternative secondary organic aerosol schemes to get a better idea of the sensitivity of the results to the various assumptions concerning both emissions and atmospheric processing of POA.
Nordic Council of Ministers
2022
Marine litter and non-degradable plastic pollution is of global concern. Regular monitoring programs are being established to assess and understand the scale of this pollution. In Europe, the goal of the European Marine Strategy Framework Directive (MSFD) is to assess trends in Good Environmental Status and support large-scale actions at the regional level. Marine litter monitoring requires tailored sampling strategies, protocols and indicators, that align with specific objectives and are tailored for local or regional needs. In addition, the uneven spatial and temporal distributions of marine litter present a challenge when designing a statistically powerful monitoring program. In this paper, we critically review the existing marine litter monitoring programs in Europe. We discuss the main constraints, including environmental, logistical, scientific, and ethical factors. Additionally, we outline the critical gaps and shortcomings in monitoring MSFD beaches/shorelines, floating litter, seafloor litter, microplastics, and harm. Several priorities must be established to shape the future of monitoring within the MSFD. Recent developments in analytical approaches, including optimizing protocols and sampling strategies, gaining a better understanding of the spatiotemporal heterogeneity of litter and its implications for survey design and replication, and the inclusion of newly validated methodologies that have achieved sufficient technical readiness, must be considered. Although there are well-established methods for assessing beaches, floating and seafloor litter, it will be necessary to implement monitoring schemes for microplastics in sediments and invertebrates as robust analytical methods become available for targeting smaller particle size classes. Furthermore, the inclusion of indicators for entanglement and injury to marine organisms will have to be considered in the near future. Moreover, the following actions will enhance the effectiveness of monitoring efforts: (1) creating an inventory of accumulation areas and sources of specific types of litter (e.g., fishing gear), (2) monitoring riverine inputs of litter, (3) monitoring atmospheric inputs including microplastics, (4) accidental inputs during extreme weather events, and (5) studying how species at risk may be transported by litter. We provide recommendations to support long-term, effective, and well-coordinated marine litter monitoring within the MSFD to achieve a comprehensive and accurate understanding of marine litter in EU waters. This will allow the development of measures to mitigate the impacts of marine pollution and eventually to evaluate the success of the respective measures.
Elsevier
2024
Havforskningsinstituttet
2025
2011