Fant 9759 publikasjoner. Viser side 308 av 391:
Critical review of the atmospheric composition observing capabilities for monitoring and forecasting
WMO
2025
2016
This study critically examines the workflow for untargeted analysis of volatile organic compounds (VOCs) in ambient air, from sampling strategies to data interpretation by using GC-HRMS. While untargeted approaches are well-established in liquid chromatography (LC) due to advanced-deconvolution tools and extensive metabolomic libraries, their application in gas chromatography (GC) remains less developed, particularly for VOCs. The high structural isomerism of VOCs and the relative novelty of GC-based untargeted methodologies present unique challenges, including limited software tools and reference libraries. Air samples from suburban and rural sites in central Italy were analyzed to explore chemical diversity and address methodological gaps. This study evaluates critical decisions, such as sampling strategies, extraction techniques, and data-processing workflows, highlighting the limitations of automated deconvolution tools and the need for manual validation. Results revealed distinct source contributions, with suburban areas showing higher levels of anthropogenic compounds and rural areas dominated by biogenic emissions. This work underscores the potential of GC-HRMS untargeted analysis to advance environmental chemistry, while addressing key pitfalls and providing practical recommendations for reliable application. By bridging methodological gaps, it offers a roadmap for future studies aiming to integrate untargeted and targeted approaches in air quality research.
MDPI
2025
2015
Criteria for EUROAIRNET. The EEA air quality monitoring and information network. EEA Technical Report, 12
1999
2002
1999
2009
2006
2011
2010
2023
Costs and benefits of implementing an Environmental Speed Limit in a Nordic city
We present a comprehensive study on the impacts and associated changes in costs resulting from the implementation of Environmental Speed Limits (ESLs), as a measure to reduce PM10 and associated health effects. We present detailed modelled emissions (i.e., CO2, NOx, PM2.5 and PM10), concentration levels (i.e., PM2.5 and PM10) and population exposure to PM2.5 and PM10 under three scenarios of ESL implementation for the Metropolitan Area of Oslo. We find that whilst emissions of NOx and CO2 do not seem to show significant changes with ESL implementation, PM10 emissions are reduced by 6–12% and annual concentration levels are reduced up to 8%, with a subsequent reduction in population exposure. The modelled data is used to carry out a detailed analysis to quantify the changes in private and social costs for the roads in Oslo where ESL are implemented today. This involves assessments related to human health, climate, fuel consumption, time losses and the incidence of traffic accidents. For a scenario using actual speed data from ESL implementation, our study shows a net benefit associated with the implementation of ESLs, whilst for a theoretical scenario with strict speed limit compliance we find a net increase in costs. This is largely due to variation in costs due to time losses between the scenarios, although uncertainties are high.
Elsevier
2020
2024
2008
2009
1999
2018
2008