Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10000 publikasjoner. Viser side 31 av 400:

Publikasjon  
År  
Kategori

Revised Historical Black Carbon Emissions based on Atmospheric Modelling, Ice Core Records and an Inverse Algorithm

Eckhardt, Sabine; Evangeliou, Nikolaos; Zwaaftink, Christine Groot; Plach, Andreas; McConnell, Joseph; Sigl, Michael; Zdanowicz, Christian; Lim, Seahee; Chellman, Nathan J; Opel, Thomas; Meyer, Hanno; Steffensen, Jørgen Peder; Schwikowski, Margit; Stohl, Andreas

2023

Impact of 2020 COVID-19 lockdowns on particulate air pollution across Europe

Putaud, Jean-Philippe; Pisoni, Enrico; Mangold, Alexander; Hueglin, Christoph; Sciare, Jean; Pikridas, Michael; Savvides, Chrysantos; Ondráček, Jakub; Mbengue, Saliou; Wiedensohler, Alfred; Weinhold, Kay; Merkel, Maik; Poulain, Laurent; Pinxteren, Dominik van; Herrmann, Hartmut; Massling, Andreas; Nordstroem, Claus; Alastuey, Andres; Reche, Cristina; Perez, Noemi; Castillo, Sonia; Sorribas, Mar; Adame, Jose A.; Petäjä, Tuukka; Lehtipalo, Katrianne; Niemi, Jarkko; Riffault, Véronique; Brito, Joel F. De; Colette, Augustin; Favez, Olivier; Petit, Jean-Eudes; Gros, Valérie; Gini, Maria; Vratolis, Stergios; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Gon, Hugo Denier van der; Yttri, Karl Espen; Aas, Wenche

To fight against the first wave of coronavirus disease 2019 (COVID-19) in 2020, lockdown measures were implemented in most European countries. These lockdowns had well-documented effects on human mobility. We assessed the impact of the lockdown implementation and relaxation on air pollution by comparing daily particulate matter (PM), nitrogen dioxide (NO2) and ozone (O3) concentrations, as well as particle number size distributions (PNSDs) and particle light absorption coefficient in situ measurement data, with values that would have been expected if no COVID-19 epidemic had occurred at 28 sites across Europe for the period 17 February–31 May 2020. Expected PM, NO2 and O3 concentrations were calculated from the 2020 Copernicus Atmosphere Monitoring Service (CAMS) ensemble forecasts, combined with 2019 CAMS ensemble forecasts and measurement data. On average, lockdown implementations did not lead to a decrease in PM2.5 mass concentrations at urban sites, while relaxations resulted in a +26 ± 21 % rebound. The impacts of lockdown implementation and relaxation on NO2 concentrations were more consistent (−29 ± 17 and +31 ± 30 %, respectively). The implementation of the lockdown measures also induced statistically significant increases in O3 concentrations at half of all sites (+13 % on average). An enhanced oxidising capacity of the atmosphere could have boosted the production of secondary aerosol at those places. By comparison with 2017–2019 measurement data, a significant change in the relative contributions of wood and fossil fuel burning to the concentration of black carbon during the lockdown was detected at 7 out of 14 sites. The contribution of particles smaller than 70 nm to the total number of particles significantly also changed at most of the urban sites, with a mean decrease of −7 ± 5 % coinciding with the lockdown implementation. Our study shows that the response of PM2.5 and PM10 mass concentrations to lockdown measures was not systematic at various sites across Europe for multiple reasons, the relationship between road traffic intensity and particulate air pollution being more complex than expected.

2023

A history about Lagrangian modelling - transport of hazardous substances through the atmosphere

Eckhardt, Sabine; Sigl, Michael; Pisso, Ignacio; Evangeliou, Nikolaos; Stebel, Kerstin

2023

Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors

Jørstad, Per Martin; Wojcikowski, Marek; Cao, Tuan-Vu; Lepioufle, Jean-Marie; Wojtkiewicz, Krystian; Ha, Hoai Phuong

<p>Monitoring air pollution is a critical step towards improving public health, particularly when it comes to identifying the primary air pollutants that can have an impact on human health. Among these pollutants, particulate matter (PM) with a diameter of up to 2.5 μm (or PM2.5) is of particular concern, making it important to continuously and accurately monitor pollution related to PM. The emergence of mobile low-cost PM sensors has made it possible to monitor PM levels continuously in a greater number of locations. However, the accuracy of mobile low-cost PM sensors is often questionable as it depends on geographical factors such as local atmospheric conditions. <p>This paper presents new calibration methods for mobile low-cost PM sensors that can correct inaccurate measurements from the sensors in real-time. Our new methods leverage Neural Architecture Search (NAS) to improve the accuracy and efficiency of calibration models for mobile low-cost PM sensors. The experimental evaluation shows that the new methods reduce accuracy error by more than 26% compared with the state-of-the-art methods. Moreover, the new methods are lightweight, taking less than 2.5 ms to correct each PM measurement on Intel Neural Compute Stick 2, an AI-accelerator for edge devices deployed in air pollution monitoring platforms.

2023

Painted Wood Climate Risk Analysis by the HERIe Model of Building Protection and Conservation Heating Scenarios in Norwegian Medieval Stone Churches

Grøntoft, Terje; Stoveland, Lena Porsmo

HERIe was used to model the effect of changes to indoor climate on the risk of humidity-induced mechanical damage (cracking and plastic deformation) to wooden panels painted with stiff gesso in two Norwegian medieval stone churches: Kinn (mean relative humidity (RH, %) = 79%) on the humid west coast, and Ringsaker (mean RH = 49%) in the drier eastern part of the country. The risk involved in moving cultural heritage objects (paint on wood) between the churches and a conservation studio with more “ideal”, stable conditions was also modeled. A hypothetical reduction in RH to ~65% and, proportionally, of the climate fluctuations in Kinn, and an increase in the RH in Ringsaker to a more stable value of ~63% via conservation heating, were found to improve (Kinn) and uphold (Ringsaker) the conformity to relevant standards and significantly reduce the risk of damage, except in the scenario of moving objects from Ringsaker to a conservation studio, when the risk would increase. The use of conservation heating could save ~50% of the heating cost. The estimated risk reductions may be less relevant for objects kept in situ, where cracks in the original paint and gesso have developed historically. They may be more relevant when moving original objects away from their proofed climate into a conservation studio for treatment.

2023

Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring

Ahmed, Shaddy; Thomas, Jennie L.; Angot, Hélène; Dommergue, Aurélien; Archer, Stephen D.; Bariteau, Ludovic; Beck, Ivo; Benavent, Nuria; Blechschmidt, Anne-Marlene; Blomquist, Byron; Boyer, Matthew; Christensen, Jesper H.; Dahlke, Sandro; Dastoor, Ashu; Helmig, Detlev; Howard, Dean; Jacobi, Hans-Werner; Jokinen, Tuija; Lapere, Rémy; Laurila, Tiia; Quéléver, Lauriane L.J.; Richter, Andreas; Ryjkov, Andrei; Mahajan, Anoop S.; Marelle, Louis; Pfaffhuber, Katrine Aspmo; Posman, Kevin; Rinke, Annette; Saiz-Lopez, Alfonso; Schmale, Julia; Skov, Henrik; Steffen, Alexandra; Stupple, Geoff; Stutz, Jochen; Travnikov, Oleg; Zilker, Bianca

Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cryosphere, ocean, and other surfaces, which can ultimately get integrated into the Arctic food web. Depletion of both mercury and ozone occur due to the presence of reactive halogen radicals that are released from snow, ice, and aerosols. In this work, we added a detailed description of the Arctic atmospheric mercury cycle to our recently published version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem 4.3.3) that includes Arctic bromine and chlorine chemistry and activation/recycling on snow and aerosols. The major advantage of our modelling approach is the online calculation of bromine concentrations and emission/recycling that is required to simulate the hourly and daily variability of Arctic mercury depletion. We used this model to study coupling between reactive cycling of mercury, ozone, and bromine during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) spring season in 2020 and evaluated results compared to land-based, ship-based, and remote sensing observations. The model predicts that elemental mercury oxidation is driven largely by bromine chemistry and that particulate mercury is the major form of oxidized mercury. The model predicts that the majority (74%) of oxidized mercury deposited to land-based snow is re-emitted to the atmosphere as gaseous elemental mercury, while a minor fraction (4%) of oxidized mercury that is deposited to sea ice is re-emitted during spring. Our work demonstrates that hourly differences in bromine/ozone chemistry in the atmosphere must be considered to capture the springtime Arctic mercury cycle, including its integration into the cryosphere and ocean.

2023

The New Norwegian Infrastructure - Troll Observing Network - under Establishment in Dronning Maud Land, Antarctica

Pedersen, Christina Alsvik; Schweitzer, Johannes; Njåstad, Brigit; Miloch, Wojciech Jacek; Aas, Wenche; Hudson, Stephen; Hattermann, Tore; Darelius, Elin Maria K.; Descamps, Sebastien; Storvold, Rune; Flått, Stig; Tronstad, Stein

Antarctica and the Southern Ocean are important parts of the Earth system. The physical and biological properties here to a large degree control and shape other parts of the Earth through atmospheric, cryospheric and oceanic connections. The Troll Observing Network – TONe - is a new comprehensive infrastructure centered around the Norwegian Troll Research Station in Dronning Maud Land. It will be an important contribution to global research efforts in this part of Antarctica, closing data gaps in Antarctic environmental observations and providing key data required to respond to the fundamental societal challenges and uncertainties facing the world today. The Norwegian and international partner consortium in TONe is in the process to develop the state-of-the-art, multi-platform, multi-disciplinary observatory network for environmental observations, and a remotely piloted aerial system (RPAS) services to collect data for studying and monitoring the atmosphere, terrestrial and marine environment. The observatory network consists of 8 observatories: an integrated cloud observatory, an atmosphere composition observatory, an infrasound array, an ionospheric observatory, a seismic array, an ice-shelf observatory, a multidisciplinary open ocean moored observatory and a sea-bird observatory. The key aspect of TONe is to ensure wide and free access to the data from the observatories and the RPAS services to the entire national and international research community. TONe as a whole will be implemented and fully operational from 2027, while single parts of the infrastructure will be available before that.

2023

Chlorinated paraffins in urban air in Nordic countries

Bohlin-Nizzetto, Pernilla; Borgen, Anders; Nipen, Maja

In 2022, the Joint Nordic screening group decided to perform a Nordic study on short-, medium- and long-chain chlorinated paraffins (SCCPs, MCCPs, LCCPs) in urban air. A previous study performed on behalf of screening group in 2019 observed higher concentrations of chlorinated paraffins (CPs) in air samples from an urban site than from remote sites (Schlabach et al. 2022). It was then suggested that tire wear particles could be the source for the elevated urban concentrations.

The focus of the study in 2022 was to collect data to improve the understanding of sources for CPs in air by: (1) comparing concentrations measured in wintertime when studded tires are used and in summertime when normal tires are used, (2) comparing data from three capitals in the Nordic countries, and (3) compare urban air concentrations to air concentrations in a car tire testing facility. All the member countries were invited to participate but based on the possibilities to collect active air samples in urban locations, it was decided to collect air samples from Helsinki (Finland), Reykjavik and Reykjanesbær (Iceland) and Oslo (Norway). Samples were collected in February–March 2022 and May–August 2022. The sampling time for each sample was 48 hrs and 3–6 samples were collected per site and season.

Nordic Council of Ministers

2023

Biological Uptake of Organic Contaminants from Car Tire Particles

Halsband, Claudia; Hägg, Fanny; Galtung, Kristin; Herzke, Dorte; Booth, Andrew Michael; Nikiforov, Vladimir

2023

Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores

Eichler, Anja; Legrand, Michel; Jenk, Theo M.; Preunkert, Susanne; Andersson, Camilla; Eckhardt, Sabine; Engardt, Magnuz; Plach, Andreas; Schwikowski, Margit

Individual high-Alpine ice cores have been proven to contain a well-preserved history of past anthropogenic air pollution in western Europe. The question of how representative one ice core is with respect to the reconstruction of atmospheric composition in the source region has not been addressed so far. Here, we present the first study systematically comparing longer-term ice-core records (1750–2015 CE) of various anthropogenic compounds, such as major inorganic aerosol constituents (, , ), black carbon (BC), and trace species (Cd, F−, Pb). Depending on the data availability for the different air pollutants, up to five ice cores from four high-Alpine sites located in the European Alps analysed by different laboratories were considered. Whereas absolute concentration levels can partly differ depending on the prevailing seasonal distribution of accumulated precipitation, all seven investigated anthropogenic compounds are in excellent agreement between the various sites for their respective, species-dependent longer-term concentration trends. This is related to common source regions of air pollution impacting the four sites less than 100 km away including western European countries surrounding the Alps. For individual compounds, the Alpine ice-core composites developed in this study allowed us to precisely time the onset of pollution caused by industrialization in western Europe. Extensive emissions from coal combustion and agriculture lead to an exceeding of pre-industrial (1750–1850) concentration levels already at the end of the 19th century for BC, Pb, (non-dust, non-sea salt ), and , respectively. However, Cd, F−, and concentrations started surpassing pre-industrial values only in the 20th century, predominantly due to pollution from zinc and aluminium smelters and traffic. The observed maxima of BC, Cd, F−, Pb, and concentrations in the 20th century and a significant decline afterwards clearly reveal the efficiency of air pollution control measures such as the desulfurization of coal, the introduction of filters and scrubbers in power plants and metal smelters, and the ban of leaded gasoline improving the air quality in western Europe. In contrast, and concentration records show levels in the beginning of the 21th century which are unprecedented in the context of the past 250 years, indicating that the introduced abatement measures to reduce these pollutants were insufficient to have a major effect at high altitudes in western Europe. Only four ice-core composite records (BC, F−, Pb, ) of the seven investigated pollutants correspond well with modelled trends, suggesting inaccuracies of the emission estimates or an incomplete representation of chemical reaction mechanisms in the models for the other pollutants. Our results demonstrate that individual ice-core records from different sites in the European Alps generally provide a spatially representative signal of anthropogenic air pollution trends in western European countries.

2023

Estimating methane emissions in the Arctic nations using surface observations from 2008 to 2019

Wittig, Sophie; Berchet, Antoine; Pison, Isabelle; Saunois, Marielle; Thanwerdas, Joel; Martinez, Adrien; Paris, Jean-Daniel; Machida, Toshinobu; Sasakawa, Motoki; Worthy, Doug E.J.; Lan, Xin; Thompson, Rona Louise; Sollum, Espen; Arshinov, Mikhail

The Arctic is a critical region in terms of global warming. Environmental changes are already progressing steadily in high northern latitudes, whereby, among other effects, a high potential for enhanced methane (CH4) emissions is induced. With CH4 being a potent greenhouse gas, additional emissions from Arctic regions may intensify global warming in the future through positive feedback. Various natural and anthropogenic sources are currently contributing to the Arctic's CH4 budget; however, the quantification of those emissions remains challenging. Assessing the amount of CH4 emissions in the Arctic and their contribution to the global budget still remains challenging. On the one hand, this is due to the difficulties in carrying out accurate measurements in such remote areas. Besides, large variations in the spatial distribution of methane sources and a poor understanding of the effects of ongoing changes in carbon decomposition, vegetation and hydrology also complicate the assessment. Therefore, the aim of this work is to reduce uncertainties in current bottom-up estimates of CH4 emissions as well as soil oxidation by implementing an inverse modelling approach in order to better quantify CH4 sources and sinks for the most recent years (2008 to 2019). More precisely, the objective is to detect occurring trends in the CH4 emissions and potential changes in seasonal emission patterns. The implementation of the inversion included footprint simulations obtained with the atmospheric transport model FLEXPART (FLEXible PARTicle dispersion model), various emission estimates from inventories and land surface models, and data on atmospheric CH4 concentrations from 41 surface observation sites in the Arctic nations. The results of the inversion showed that the majority of the CH4 sources currently present in high northern latitudes are poorly constrained by the existing observation network. Therefore, conclusions on trends and changes in the seasonal cycle could not be obtained for the corresponding CH4 sectors. Only CH4 fluxes from wetlands are adequately constrained, predominantly in North America. Within the period under study, wetland emissions show a slight negative trend in North America and a slight positive trend in East Eurasia. Overall, the estimated CH4 emissions are lower compared to the bottom-up estimates but higher than similar results from global inversions.

2023

Kan vi leve uten plast?

Hanssen, Linda (intervjuobjekt); Jemterud, Torkild (journalist)

2023

An in vitro 3D advanced lung model for hazard assessment of nanomaterials on human health

Camassa, Laura Maria Azzurra; Anmarkrud, Kristine Haugen; Sadeghiankaffash, Hamed; Elje, Elisabeth; Ervik, Torunn Kringlen; Congying, Z.; Shaposhnikov, S.; Rundén-Pran, Elise; Zienolddiny, Shanbeh

2023

Fluorine Mass Balance, including Total Fluorine, Extractable Organic Fluorine, Oxidizable Precursors, and Target Per- and Polyfluoroalkyl Substances, in Pooled Human Serum from the Tromsø Population in 1986, 2007, and 2015

Cioni, Lara; Plassmann, Merle; Benskin, Jonathan P.; Coelho, Ana Carolina; Nøst, Therese Haugdahl; Rylander, Karin Charlotta Maria; Nikiforov, Vladimir; Sandanger, Torkjel Manning; Herzke, Dorte

Of the thousands of per- and polyfluoroalkyl substances (PFAS) known to exist, only a small fraction (≤1%) are commonly monitored in humans. This discrepancy has led to concerns that human exposure may be underestimated. Here, we address this problem by applying a comprehensive fluorine mass balance (FMB) approach, including total fluorine (TF), extractable organic fluorine (EOF), total oxidizable precursors (TOP), and selected target PFAS, to human serum samples collected over a period of 28 years (1986, 2007, and 2015) in Tromsø, Norway. While concentrations of TF did not change between sampling years, EOF was significantly higher in 1986 compared to 2007 and 2015. The ∑12PFAS concentrations were highest in 2007 compared to 1986 and 2015, and unidentified EOF (UEOF) decreased from 1986 (46%) to 2007 (10%) and then increased in 2015 (37%). While TF and EOF were not influenced by sex, women had higher UEOF compared to men, opposite to target PFAS. This is the first FMB in human serum to include TOP, and it suggests that precursors with >4 perfluorinated carbon atoms make a minor contribution to EOF (0–4%). Additional tools are therefore needed to identify substances contributing to the UEOF in human serum.

2023

Monitoring of environmental contaminants in air and precipitation. Annual report 2022.

Halvorsen, Helene Lunder; Pfaffhuber, Katrine Aspmo; Nipen, Maja; Bohlin-Nizzetto, Pernilla; Berglen, Tore Flatlandsmo; Nikiforov, Vladimir; Hartz, William Frederik

This report presents air monitoring data from 2022 for the Norwegian monitoring programme "Atmospheric contaminants". The results cover 260 organic compounds (regulated and non-regulated) and 16 compound groups, 14 heavy metals, and a selection of organic chemicals of concern.

NILU

2023

Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2021

Timmermann, Volkmar; Børja, Isabella; Clarke, Nicholas; Eriksen, Rune; Gohli, Jostein; Hylen, Gro; Jepsen, Jane Uhd; Krokene, Paal; Lange, Holger; Meissner, Helge Rainer; Nagy, Nina Elisabeth; Nordbakken, Jørn-Frode; Solberg, Sverre; Solheim, Halvor; Vindstad, Ole Petter Laksforsmo; Økland, Bjørn; Aas, Wenche

Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2021 og trender over tid for følgende temaer:
(i) Landsrepresentativ skogovervåking;
(ii) Skogøkologiske analyser og målinger av luftkjemi på de intensive overvåkingsflatene;
(iii) Overvåking av bjørkemålere i Troms og Finnmark;
(iv) Barkbilleovervåkingen 2021 og mulig overgang til to generasjoner;
(v) Asiatisk askepraktbille – en dørstokkart?
(vi) Overvåking av askeskuddsyke;
(vii) Andre spesielle skogskader i 2021.

NIBIO

2023

Review of Interpreting Gaseous Pollution Data Regarding Heritage Objects

Thickett, David; Grøntoft, Terje

Pollutant gases pose a significant risk to some cultural heritage objects, and surveys have shown that the professionals involved consider themselves to lack knowledge to fully assess risk. Three approaches towards risk assessment, research results, standards and damage functions have been considered. An assessment tool has been developed, collating over 4000 research reports into a scheme for the impact on 22 materials of acetic and formic acids, nitrogen dioxide, ozone and reduced sulphur gases. The application of doses or concentrations has been considered, the impact of measurement time compared to annual exposure investigated and a simple tool derived.

2023

Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling

Tichý, Ondřej; Eckhardt, Sabine; Balkanski, Yves; Hauglustaine, Didier; Evangeliou, Nikolaos

Ammonia (NH3), a significant precursor of particulate matter, affects not only biodiversity, ecosystems, and soil acidification but also climate and human health. In addition, its concentrations are constantly rising due to increasing feeding needs and the large use of fertilization and animal farming. Despite the significance of ammonia, its emissions are associated with large uncertainties, while its atmospheric abundance is difficult to measure. Nowadays, satellite products can effectively measure ammonia with low uncertainty and a global coverage. Here, we use satellite observations of column ammonia in combination with an inversion algorithm to derive ammonia emissions with a high resolution over Europe for the period 2013–2020. Ammonia emissions peak in northern Europe due to agricultural application and livestock management, in western Europe (industrial activity), and over Spain (pig farming). Emissions have decreased by −26 % since 2013 (from 5431 Gg in 2013 to 3994 Gg in 2020), showing that the abatement strategies adopted by the European Union have been very efficient. The slight increase (+4.4 %) in 2015 is also reproduced here and is attributed to some European countries exceeding annual emission targets. Ammonia emissions are low in winter (286 Gg) and peak in summer (563 Gg) and are dominated by the temperature-dependent volatilization of ammonia from the soil. The largest emission decreases were observed in central and eastern Europe (−38 %) and in western Europe (−37 %), while smaller decreases were recorded in northern (−17 %) and southern Europe (−7.6 %). When complemented with ground observations, modelled concentrations using the posterior emissions showed improved statistics, also following the observed seasonal trends. The posterior emissions presented here also agree well with respective estimates reported in the literature and inferred from bottom-up and top-down methodologies. These results indicate that satellite measurements combined with inverse algorithms constitute a robust tool for emission estimates and can infer the evolution of ammonia emissions over large timescales.

2023

Seasonal and latitudinal variability in the atmospheric concentrations of cyclic volatile methyl siloxanes in the Northern Hemisphere

Wania, Frank; Warner, Nicholas Alexander; McLachlan, Michael S; Durham, Jeremy; Lei, Ying Duan; Xu, Shihe

Field data from two latitudinal transects in Europe and Canada were gathered to better characterize the atmospheric fate of three cyclic methylsiloxanes (cVMSs), i.e., octamethyl-cyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). During a year-long, seasonally resolved outdoor air sampling campaign, passive samplers with an ultra-clean sorbent were deployed at 15 sampling sites covering latitudes ranging from the source regions (43.7–50.7 °N) to the Arctic (79–82.5 °N). For each site, one of two passive samplers and one of two field blanks were separately extracted and analyzed for the cVMSs at two different laboratories using gas-chromatography-mass spectrometry. Whereas the use of a particular batch of sorbent and the applied cleaning procedure to a large extent controlled the levels of cVMS in field blanks, and therefore also the method detection and quantification limits, minor site-specific differences in field blank contamination were apparent. Excellent agreement between duplicates was obtained, with 95% of the concentrations reported by the two laboratories falling within a factor of 1.6 of each other. Nearly all data show a monotonic relationship between the concentration and distance from the major source regions. Concentrations in source regions were comparatively constant throughout the year, while the concentration gradient towards remote regions became steeper during summer when removal via OH radicals is at its maximum. Concentrations of the different cVMS oligomers were highly correlated within a given transect. Changes in relative abundance of cVMS oligomers along the transect were in agreement with relative atmospheric degradation rates via OH radicals.

2023

Spatial mapping of emissions

Kuenen, Jeroen; Aardenne, John van; Goodwin, Justin; Mareckova, Katarina; Adams, Martin; Ruyssenaars, Paul; Wankmüller, Robert; Pye, Stephen; King, Katie; Veldeman, Nele; Maas, Wim van der; Lopez-Aparicio, Susana; Plejdrup, Marlene S.; d'elia, Ilaria; Feigenspan, Stefan; Vilardell, Marc Guevara

2023

Energetic Particle Precipitation Reflected in the Global Secondary Ozone Distribution

Espy, Patrick Joseph; Jia, Jia; Murberg, Lise Eder; Løvset, Tiril; Orsolini, Yvan Joseph Georges Emile G.; Zeller, Lilou C.G.; Salinas, Jude; Lee, Jae N.; Wu, Dong Liang; Zhang, Jiarong

2023

Applying Community Standards for Domain-Relevant Metadata to Enhance Data Product FAIRness

Silverman, Morgan L.; Fiebig, Markus; Shook, Michael; Huffer, Elisabeth; Buzanowicz, Megan Elisabeth; Leavor, Sean; Kusterer, John; Chen, Gao

2023

Publikasjon
År
Kategori