Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9887 publikasjoner. Viser side 312 av 396:

Publikasjon  
År  
Kategori

Microplastics from your tires are likely reaching the most remote places on Earth, study finds

Evangeliou, Nikolaos; Stohl, Andreas (intervjuobjekter); Kann, Drew (journalist)

2020

Copernicus Atmosphere Monitoring Service. Interim Annual Assessment Report for 2019. European air quality in 2019

Tarrasón, Leonor; Hamer, Paul David; Meleux, Frédérik; Colette, Augustin; Rouïl, Laurence

Copernicus Atmosphere Monitoring Service

2020

Prøvetaking og analyse av arsen (As) i omgivelsesluft ved Elkem Carbon. September 2019 – september 2020.

Hak, Claudia

På oppdrag fra Elkem Carbon AS, har NILU utført målinger av arsen (As) i omgivelsene til Elkem Carbon i Vågsbygd
(Kristiansand kommune). Bedriften ble pålagt av Miljødirektoratet å gjennomføre As-målinger i omgivelsesluft. PM10-prøver tatt med filterprøvetaker i boligområdet på Fiskåtangen (Konsul Wilds vei) ble analysert med hensyn på As med induktivt koblet plasma massespektrometri (ICP-MS). Rapporten dekker målinger i perioden 25. september 2019 – 28. september 2020. Årsmiddelverdien av konsentrasjonen av As ble målt til 2,38 ng/m3. Målsettingsverdien for tiltak i forurensningsforskriften på 6 ng/m3 ble overholdt med god margin. Årsmiddelverdien var marginalt lavere enn nedre vurderingsterskel på 2,4 ng/m3. Et langtransportert bidrag til de to høyeste registrerte As døgnkonsentrasjonene kan ikke utelukkes.

NILU

2020

An overview of the uses of per- And polyfluoroalkyl substances (PFAS)

Glüge, Juliane; Scheringer, Martin; Cousins, Ian T.; Dewitt, Jamie C.; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Ng, Carla A.; Trier, Xenia; Wang, Zhanyun

Per- and polyfluoroalkyl substances (PFAS) are of concern because of their high persistence (or that of their degradation products) and their impacts on human and environmental health that are known or can be deduced from some well-studied PFAS. Currently, many different PFAS (on the order of several thousands) are used in a wide range of applications, and there is no comprehensive source of information on the many individual substances and their functions in different applications. Here we provide a broad overview of many use categories where PFAS have been employed and for which function; we also specify which PFAS have been used and discuss the magnitude of the uses. Despite being non-exhaustive, our study clearly demonstrates that PFAS are used in almost all industry branches and many consumer products. In total, more than 200 use categories and subcategories are identified for more than 1400 individual PFAS. In addition to well-known categories such as textile impregnation, fire-fighting foam, and electroplating, the identified use categories also include many categories not described in the scientific literature, including PFAS in ammunition, climbing ropes, guitar strings, artificial turf, and soil remediation. We further discuss several use categories that may be prioritised for finding PFAS-free alternatives. Besides the detailed description of use categories, the present study also provides a list of the identified PFAS per use category, including their exact masses for future analytical studies aiming to identify additional PFAS.

Royal Society of Chemistry (RSC)

2020

The influence of residential wood combustion on the concentrations of PM2.5 in four Nordic cities

Kukkonen, Jaakko; Lopez-Aparicio, Susana; Segersson, David; Geels, Camilla; Kangas, Leena; Kauhaniemi, Mari; Maragkidou, Androniki; Jensen, Anne; Assmuth, Timo; Karppinen, Ari; Sofiev, Mikhail; Hellén, Heidi; Riikonen, Kari; Nikmo, Juha; Kousa, Anu; Niemi, Jarkko; Karvosenoja, Niko; Sousa Santos, Gabriela; Sundvor, Ingrid; Im, Ulas; Christensen, Jesper H.; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Nøjgaard, Jacob Klenø; Omstedt, Gunnar; Andersson, Camilla; Forsberg, Bertil; Brandt, Jørgen

Residential wood combustion (RWC) is an important contributor to air quality in numerous regions worldwide. This study is the first extensive evaluation of the influence of RWC on ambient air quality in several Nordic cities. We have analysed the emissions and concentrations of PM2.5 in cities within four Nordic countries: in the metropolitan areas of Copenhagen, Oslo, and Helsinki and in the city of Umeå. We have evaluated the emissions for the relevant urban source categories and modelled atmospheric dispersion on regional and urban scales. The emission inventories for RWC were based on local surveys, the amount of wood combusted, combustion technologies and other relevant factors. The accuracy of the predicted concentrations was evaluated based on urban concentration measurements. The predicted annual average concentrations ranged spatially from 4 to 7 µg m−3 (2011), from 6 to 10 µg m−3 (2013), from 4 to more than 13 µg m−3 (2013) and from 9 to more than 13 µg m−3 (2014), in Umeå, Helsinki, Oslo and Copenhagen, respectively. The higher concentrations in Copenhagen were mainly caused by the relatively high regionally and continentally transported background contributions. The annual average fractions of PM2.5 concentrations attributed to RWC within the considered urban regions ranged spatially from 0 % to 15 %, from 0 % to 20 %, from 8 % to 22 % and from 0 % to 60 % in Helsinki, Copenhagen, Umeå and Oslo, respectively. In particular, the contributions of RWC in central Oslo were larger than 40 % as annual averages. In Oslo, wood combustion was used mainly for the heating of larger blocks of flats. In contrast, in Helsinki, RWC was solely used in smaller detached houses. In Copenhagen and Helsinki, the highest fractions occurred outside the city centre in the suburban areas. In Umeå, the highest fractions occurred both in the city centre and its surroundings.

2020

Concentration Fluctuations from Localized Atmospheric Releases

Cassiani, Massimo; Bertagni, Matteo B.; Marro, Massimo; Salizzoni, Pietro

We review the efforts made by the scientific community in more than seventy years to elucidate the behaviour of concentration fluctuations arising from localized atmospheric releases of dynamically passive and non-reactive scalars. Concentration fluctuations are relevant in many fields including the evaluation of toxicity, flammability, and odour nuisance. Characterizing concentration fluctuations requires not just the mean concentration but also at least the variance of the concentration in the location of interest. However, for most purposes the characterization of the concentration fluctuations requires knowledge of the concentration probability density function (PDF) in the point of interest and even the time evolution of the concentration. We firstly review the experimental works made both in the field and in the laboratory, and cover both point sources and line sources. Regarding modelling approaches, we cover analytical, semi-analytical, and numerical methods. For clarity of presentation we subdivide the models in two groups, models linked to a transport equation, which usually require a numerical resolution, and models mainly based on phenomenological aspects of dispersion, often providing analytical or semi-analytical relations. The former group includes: large-eddy simulations, Reynolds-averaged Navier–Stokes methods, two-particle Lagrangian stochastic models, PDF transport equation methods, and heuristic Lagrangian single-particle methods. The latter group includes: fluctuating plume models, semi-empirical models for the concentration moments, analytical models for the concentration PDF, and concentration time-series models. We close the review with a brief discussion highlighting possible useful additions to experiments and improvements to models.

Springer

2020

The high persistence of PFAS is sufficient for their management as a chemical class

Cousins, Ian T.; Dewitt, Jamie C.; Glüge, Juliane; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Ng, Carla A.; Scheringer, Martin; Wang, Zhanyun

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all “non-essential” uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources.

Royal Society of Chemistry (RSC)

2020

Giftproduktene du finner i hjemmet

Halse, Anne Karine (intervjuobjekt); Rognø, Linn merete (journalist)

2020

Ikke siden 2011 har det vært flere observasjoner av disse: - Nå skjer det noe

Fjæraa, Ann Mari; Svendby, Tove Marit (intervjuobjekter); Tømmerdal, Kine F. (journalist)

2020

Review on the methodology supporting the health impact assessment by the European Environment Agency

Soares, Joana; Gsella, Artur; Horálek, Jan; Guerreiro, Cristina; Ortiz, Alberto González

2020

Impact of late spring Siberian snow on summer rainfall in South-Central China

Shen, Haibo; Li, Fei; He, Shengping; Orsolini, Yvan; Li, Jingyi

Springer

2020

Aerosol carbonaceous, elemental and ionic composition variability and origin at the Siberian High Arctic, Cape Baranova

Manousakas, Manousos; Popovicheva, Olga; Evangeliou, Nikolaos; Diapouli, Evangelia; Sitnikov, Nikolay; Shonija, N.; Eleftheriadis, Konstantinos

Aerosol particles are major short-lived climate forcers, because of their ability to interact with incoming solar radiation. Therefore, addressing mean levels and sources of Arctic aerosols is of high importance in the battle against climate change, due to the Arctic amplification. In the Eastern Arctic, from Finland to Alaska, only one monitoring station exists (HMO Tiksi) and the levels of the Arctic aerosols are usually recorded by sporadic campaigns, while other stations exist in Canada, Finland and Europe. From April 2015 to December 2016, the research station "Ice Base Cape Baranova" (79°16.82'N, 101°37.05'E), located on the Bolshevik island was established in the Siberian high Arctic. Samples were analyzed for equivalent Black Carbon (eBC), Organic Carbon (OC), Elemental Carbon (EC), water-soluble ions, and elements. To identify the spatial origin of the sources, the Potential Source Contributions Function (PSCF) was used in combination with FLEXPART emission sensitivities. OC is the most dominant PM compound in the Ice Cape Baranova station and mostly originates from gas flaring and other industrial regions at lower latitudes, as well as from biomass burning during summertime. Sulfate concentrations were affected by anthropogenic sources in the cold seasons and by natural sources in the warm ones showing distinct seasonal patterns. K+ and Mg2+ originate from sea-salt in winter and from forest fires in summer. The interannual variability of eBC was in good agreement with the general Arctic seasonal trends and was mainly affected by gas flaring, low latitude industrial sources and from biomass burning emissions. Cl− depletion was very low, while Na+ and Cl− originated from the locally formed sea spray.

Stockholm University Press

2020

Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling

Flechard, Chris R.; Ibrom, Andreas; Skiba, Ute; de Vries, Wim; Van Oijen, Marcel; Cameron, David R.; Dise, Nancy B.; Korhonen, Janne; Buchmann, Nina; Legout, Arnaud; Simpson, David; Sanz, Maria J.; Aubinet, Marc; Loustau, Denis; Montagnani, Leonardo; Neirynck, Johan; Janssens, Ivan A.; Pihlatie, Mari; Kiese, Ralf; Siemens, Jan; Francez, Andre-Jean; Augustin, Jurgen; Varlagin, Andrej; Olejnik, Janusz; Juszczak, Radoslaw; Aurela, Mika; Berveiller, Daniel; Chojnicki, Bogdan H.; Dämmgen, Urich; Delpierre, Nicolas; Djuricic, Vesna; Drewer, Julia; Dufrene, Eric; Eugster, Werner; Fauvel, Yannick; Fowler, David; Frumau, Arnoud; Granier, Andre; Gross, Patrick; Hamon, Yannick; Helfter, Carole; Hensen, Arjan; Horvath, Laszlo; Kitzler, Barbara; Kruijt, Bart; Kutsch, Werner; Lobo-do-Vale, Raquel; Lohila, Annalea; Longdoz, Bernard; Marek, Michal V.; Matteucci, Giorgio; Mitosinkova, Marta; Moreaux, Virginie; Neftel, Albrecht; Ourcival, Jean-Marc; Pilegaard, Kim; Pita, Gabriel; Sanz, Francisco; Schjoerring, Jan K.; Sebastià, Maria-Teresa; Tang, Y. Sim; Uggerud, Hilde Thelle; Urbaniak, Marek; van Dijk, Netty; Vesala, Timo; Vidic, Sonja; Vincke, Caroline; Weidinger, Tamas; Sechmeister-Boltenstern, Sophie; Butterbach-Bahl, Klaus; Nemitz, Eiko; Sutton, Mark A.

The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC∕dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO−3

leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling.

Multi-year averages of net ecosystem productivity (NEP) in forests ranged from −70 to 826 g C m−2 yr−1 at total wet + dry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 g N m−2 yr−1 and from −4 to 361 g C m−2 yr−1 at Ndep rates of 0.1 to 3.1 g N m−2 yr−1 in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep where Nr leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO−3
were on average 27 % (range 6 %–54 %) of Ndep at sites with Ndep < 1 g N m−2 yr−1 versus 65 % (range 35 %–85 %) for Ndep > 3 g N m−2 yr−1. Such large levels of Nr loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr deposition up to 2–2.5 g N m−2 yr−1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP ∕ GPP ratio). At elevated Ndep levels (> 2.5 g N m−2 yr−1), where inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC∕dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep.

2020

Impact of UV degradation on the fate and potential impact of textile microfibers and their additive chemicals in the marine environment

Sørensen, Lisbet; Del Puerto, Oihane; Groven, Anette Synnøve; Hovsbakken, Ingrid Alver; Sait, Shannen; Sathananthan, Dhiya Sumar; Igartua, Amaia; Davies, Emlyn John; Sarno, Antonio; Ribicic, Deni; Salaberria, Iurgi; Brakstad, Odd Gunnar; Asimakopoulos, Alexandros; Halsband, Claudia; Herzke, Dorte; Booth, Andrew

Microfibers (MFs) are frequently reported as the most dominant type of microplastic (MP) found in the marine water column and sediments. A major source of MFs is the use and washing of textiles. Although WWTPs can remove up to 98% of MP, estimates suggest billions of MP are still released from a single WWTP annually. Intrinsic properties (polymer type, density, size) will influence environmental degradation, settling times, and ingestion of MFs by marine organisms. Less well understood is the influence of environmental degradation on the fate of MFs. In the current study, we compare the effect of UV exposure on the degradation and fragmentation of polyester (PET), polyamide (nylon; PA), polyacrylonitrile (acrylic; PAN) and wool fibers. Degradation of MFs was conducted in seawater under environmentally relevant exposure conditions using simulated sunlight. PA, PET and wool MFs exhibited changes in surface morphology after just 2 weeks from the start of exposure, followed by fragmentation after

2020

Engaging citizens in improving air quality and designing healthy and people-centred cities. The NordicPATH project in Scandinavia.

Castell, Nuria; Grossberndt, Sonja; Lissandrello, Enza; Steffansen, Rasmus; Morelli, Nicola; Linden, Jenny; Segura, Marta; Ekman, Karin; Ponti, Marisa; Broberg, Anna

2020

En giftig cocktail i havet

Herzke, Dorte (intervjuobjekt); Lyngmoe, Helge (journalist)

2020

Bør ha nye målinger

Høiskar, Britt Ann Kåstad; Hak, Claudia

2020

Crumb rubber toxicity in coastal marine systems

Halsband-Lenk, Claudia; Herzke, Dorte; Sørensen, Lisbet; Booth, Andy

Crumb rubber granulate (CRG) produced from end of life tires (ELTs) is commonly applied on indoor and outdoor synthetic turf pitches (STPs), playgrounds, safety surfaces and walkways. In addition to fillers, stabilizers, cross-linking agents and secondary components (e.g. pigments, oils, resins, fibers), ELTs contain high levels of organic additive compounds and heavy metals. While previous environmental studies have focused on terrestrial soil and freshwater ecosystems, in Norway many sites applying CRG are coastal. In the current study, the organic chemical and metal content of 'fresh' and 'weathered' CRG and their seawater leachates was investigated, and the uptake of crumb rubber by the brown crab (Cancer pagurus) was studied as an example of an exposure route for CRG to coastal marine organisms. A combination of pyrolysis gas chromatography mass spectrometry (py-GC-MS) and chemical extraction followed by GC-MS analysis revealed similar organic chemical profiles for pristine and weathered CRG, including additives such as benzothiazole, N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine and a range of polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds (e.g. bisphenols). ICP-MS analysis indicated g/kg quantities of Zn and mg/kg quantities of Fe, Mn, Cu, Co, Cr, Pb and Ni in the CRG. A mixture of organic additives, metals and other inorganic compounds readily leached from the CRG into seawater. Benzothiazole was the organic compound with highest concentration (average of 136 mg/L), while PAHs (ranging from <LOD to 0.58 mg/L) and phenolic compounds (e.g. 2,4-bisphenol F and 4,4’-bisphenol F at 0.012 and 0.006 mg/L, respectively) were present in low abundance. Zn was the most abundant metal in the leachates (23.8 mg/L) followed by Fe (0.08 mg/L) and Co (0.06 mg/L). While organic chemical concentrations in the leachates stabilized within days, metals continued to leach out over the 30 day period. Brown crabs were exposed to two concentrations of CRG (0.5 and 0.05 g/L) in two size fractions (5 mm and 250 µm diameter) for 24 hours. Ingestion of the rubber and subsequent gut evacuation were studied over 5 days. Image analysis of filtered stomach contents confirmed uptake of rubber particles in different sizes, but also efficient gut evacuation upon transfer to clean water. We discuss the implications of CRG and leachate toxicity in acute and long-term exposure scenarios for marine coastal ecosystems.

2020

EEA-33 Industrial Emissions Country Profiles. Methodology report. Updated July 2020.

Weydahl, Torleif; Young, Katrina; Hampshire, Kathryn; Goodwin, Justin; Granger, Marthe; Zeiger, Bastian

The industrial emissions country profiles summarise key data related to industry: its relevance with respect to economic contributions, energy and water consumption, as well as air and water emissions and waste generation. The country profiles are developed for the EEA-33 countries which includes the 28 EU Member States together with Iceland, Lichtenstein, Norway, Switzerland and Turkey.

The present revision (v. 3.0) of this report includes data available at date of release. This year, a new reporting, the so-called EU-Registry and thematic data reporting, is introduced in order to gather the former E-PRTR, LCP and IED reportings and finally replace them. The 2018 data are not yet readily available. Nevertheless, more quality checks have been performed on the latest E-PRTR database in order to have the cleanest final E-PRTR dataset possible. Hence, the industrial emissions country profiles are enriched with the most up-to-date data sources while still only covering the years up to 2017.

This report describes the underlying methodology to the industrial emissions country profiles that are presented as a Tableau story on the EEA webpages ([1]).

The scope of industry in this respect includes in short all industrial activities reported under the European Pollutant Release and Transfer Register (E-PRTR) excluding agriculture (activity code 7.(a) and 7.(b)). The data sources include Eurostat, the E-PRTR, greenhouse gas (GHG) emissions reported under the Monitoring Mechanism Regulation (MMR) and air pollutant emission inventories reported under the Convention on Long-range Transboundary Air Pollution (CLRTAP), each of which have their own data categories. A recently developed EEA-mapping which align these different categories is used ([2]). The data sources and industry scope is presented in full detail in the Annexes following this report.

The water and air pollutants including greenhouse gases are selected based on criteria related to their relative impact. Emissions of heavy metals to air and water have been combined by weighted averages using both eco toxicology and human toxicology characterisation factors ([3]). The amounts of hazardous and non-hazardous waste reported under Eurostat is presented, but excluding the major mineral waste that dominates the mining and construction sectors.

The data quality is evaluated and gap filling of Eurostat data is performed when needed. A method for E-PRTR outlier handling is proposed and applied where appropriate.

The significance of industry, given by gross value added (GVA), energy consumption and water use, as well as generation of waste are presented in the Tableau story as a sector percentage of EEA-33 gross total as well as percentage of country total. The trend in air and water pollution is presented as totals per pollutants relative to the latest year (2017). For the latest year the emissions are also given as percentage per sector relative to country total. The details on how the presented data is processed and aggregated is described in Annex 2.

The report is to a large extent based on previous methodology reports for “Industrial pollution country profiles”, but is also further developed to reflect feedback received through Eionet review and general requests from EEA and the European Commission.

ETC/ATNI

2020

Emissions outsourcing in the EU. A review of potential effects on industrial pollution.

Abbasi, Golnoush; Bouman, Evert

This study reviews potential evidence for emissions outsourcing in the European Union as the reduction in industrial emissions in Europe may be linked to the relocation of industry abroad (i.e. away from Europe). Emission trends of selected industrial pollutants to air (PAH, SOx, B(a)P, PCB, Pb, Zn and Ni) were established for both domestic emissions and embodied emissions in imports using available data in the EXIOBASE environmentally extended multiregional input-output system. Despite the overall decreasing trends of domestic emissions in Europe, a great variation was observed in the decrease rate of direct emissions and the increase rates in embodied emissions, due to increasing import of associated products. In addition to the analysis of data in EXIOBASE, a review of literature shows that industries’ responses to environmental regulations differ greatly based on the nature of industrial activities. Despite imposing higher costs to industries, no evidence was found in the reviewed literature that European environmental regulations caused industries to relocate. However, once industries aim to relocate outside of Europe to benefit from economic factors, such as lowering their production cost, the degree by which environmental regulations are enforced in the country of relocation can play a significant role in selecting their new location.

ETC/ATNI

2020

ClairCity: Citizen-led air pollution reduction in cities. D7.5 Final City Policy Package – Last City (Amsterdam).

Slingerland, Stephan; Artola, Irati; Barnes, Jo; Fogg-Rogers, Laura; de Vito, Laura; Hayes, Enda; Rodrigues, Vera; Oliveira, Kevin; Lopes, Myriam; Vanherle, Kris; Trozzi, Carlo; Soares, Joana; Knudsen, Svein

The ClairCity Horizon2020 project aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours as well as their preferred future behaviours and policy measures in six European cities1 through an extensive citizen and stakeholder engagement process. The project also models the possible future impacts of citizens’ policy preferences and examines implementation possibilities for these measures in the light of the existing institutional contexts in each city (Figure 0-1). This report summarises the main policy results for Amsterdam (the Netherlands).

ClairCity Project

2020

Publikasjon
År
Kategori