Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9758 publikasjoner. Viser side 315 av 391:

Publikasjon  
År  
Kategori

Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean.

Myhre, G.; Bellouin, N.; Berglen, T.F.; Berntsen, T.K.; Boucher, O.; Grini, A.; Isaksen, I.A.; Johnsrud, M.; Mishchenko, M.I.; Stordal, F.; Tanré, D.

2007

Comparison of the predictions of two road dust emission models with the measurements of a mobile van.

Kauhaniemi, M.; Stojiljkovic, A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Kupiainen, K.; Kangas, L.; Aarnio, M.A.; Omstedt, G.; Denby, B.R.; Kukkonen, J.

2014

Comparison of particle number size distribution trends in ground measurements and climate models

Leinonen, Ville; Kokkola, Harri; Yli-Juuti, Taina; Mielonen, Tero; Kühn, Thomas; Nieminen, Tuomo; Heikkinen, Simo; Miinalainen, Tuuli; Bergman, Tommi; Carslaw, Ken; Decesari, Stefano; Fiebig, Markus; Hussein, Tareq; Kivekäs, Niku; Krejci, Radovan; Kulmala, Markku; Leskinen, Ari; Massling, Andreas; Mihalopoulos, Nikos; Mulcahy, Jane P.; Noe, Steffen M.; Van Noije, Twan; O'connor, Fiona M.; O'dowd, Colin; Oliviè, Dirk Jan Leo; Pernov, Jakob B.; Petäjä, Tuukka; Seland, Øyvind; Schulz, Michael; Scott, Catherine E.; Skov, Henrik; Swietlicki, Erik; Tuch, Thomas; Wiedensohler, Alfred; Virtanen, Annele; Mikkonen, Santtu

Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol–cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.

2022

Comparison of OMI UV observations with ground-based measurements at high northern latitudes.

Bernhard, G.; Arola, A.; Dahlback, A.; Fioletov, V.; Heikkilä, A.; Johnsen, B.; Koskela, T.; Lakkala, K.; Svendby, T.; Tamminen, J.

2015

Comparison of observation- and inventory-based methane emissions for eight large global emitters

Petrescu, Ana Maria Roxana; Peters, Glen Philip; Engelen, Richard; Houweling, Sander; Brunner, Dominik; Tsuruta, Aki; Matthews, Bradley; Patra, Prabir K.; Belikov, Dmitry; Thompson, Rona Louise; Hoglund-Isaksson, Lena; Zhang, Wenxin; Segers, Arjo; Etiope, Giuseppe; Ciotoli, Giancarlo; Peylin, Philippe; Chevallier, Frédéric; Aalto, Tuula; Andrew, Robbie; Bastviken, David; Berchet, Antoine; Broquet, Gregoire; Conchedda, Giulia; Dellaert, Stijn N. C.; van der Gon, Hugo Denier; Gütschow, Johannes; Haussaire, Jean-Matthieu; Lauerwald, Ronny; Markkanen, Tiina; van Peet, Jacob C. A.; Pison, Isabelle; Regnier, Pierre; Sollum, Espen; Scholze, Marko; Tenkanen, Maria; Tubiello, Francesco N. ; van der Werf, Guido R.; Worden, John R.

Monitoring the spatial distribution and trends in surface greenhouse gas (GHG) fluxes, as well as flux attribution to natural and anthropogenic processes, is essential to track progress under the Paris Agreement and to inform its global stocktake. This study updates earlier syntheses (Petrescu et al., 2020, 2021, 2023), provides a consolidated synthesis of CH4 emissions using bottom-up (BU) and top-down (TD) approaches for the European Union (EU), and is expanded to include seven additional countries with large anthropogenic and/or natural emissions (the USA, Brazil, China, India, Indonesia, Russia, and the Democratic Republic of the Congo (DR Congo)). Our aim is to demonstrate the use of different emission estimates to help improve national GHG emission inventories for a diverse geographical range of stakeholders.

We use updated national GHG inventories (NGHGIs) reported by Annex I parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2023 and the latest available biennial update reports (BURs) reported by non-Annex I parties. Comparing NGHGIs with other approaches highlights that different system boundaries are a key source of divergence. A key system boundary difference is whether anthropogenic and natural fluxes are included and, if they are, how fluxes belonging to these two sources are partitioned.

Over the studied period, the total CH4 emission estimates in the EU, the USA, and Russia show a steady decreasing trend since 1990, while for the non-Annex I emitters analyzed in this study, Brazil, China, India, Indonesia, and DR Congo, CH4 emissions have generally increased. Quantitatively, in the EU the mean of 2015–2020 anthropogenic UNFCCC NGHGIs (15±1.8 Tg CH4 yr−1) and the mean of the BU CH4 emissions (17.8 (16–19) Tg CH4 yr−1) generally agree on the magnitude, while inversions show higher emission estimates (medians of 21 (19–22) Tg CH4 yr−1 and 24 (22–25) Tg CH4 yr−1 for the three regional and six global inversions, respectively), as they include natural emissions, which for the EU were quantified at 6.6 Tg CH4 yr−1 (Petrescu et al., 2023). Similarly, for the other Annex I parties in this study (the USA and Russia), the gap between the BU anthropogenic and total TD emissions is partly explained by the natural emissions.

For the non-Annex I parties, anthropogenic CH4 estimates from UNFCCC BURs show large differences compared to the other global-inventory-based estimates and even more compared to atmospheric ones. This poses an important potential challenge to monitoring the progress of the global CH4 pledge and the global stocktake. Our analysis provides a useful baseline to prepare for the influx of inventories from non-Annex I parties as regular reporting starts under the enhanced transparency framework of the Paris Agreement.

By systematically comparing the BU and TD methods, this study provides recommendations for more robust comparisons of available data sources and hopes to steadily engage more parties in using observational methods to complement their UNFCCC inventories, as well as considering their natural emissions. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, future development needs to resolve knowledge gaps in the BU and TD approaches and to better quantify the remaining uncertainty. TD methods may emerge as a powerful tool to help improve NGHGIs of CH4 emissions, but further confidence is needed in the comparability and robustness of the estimates.

The referenced datasets related to figures are available at https://doi.org/10.5281/zenodo.12818506 (Petrescu et al., 2024).

2024

Comparison of MIPAS O3 profiles with ground-based measurements. ESA-SP531

Blumenstock, T.; Griesfeller, A.; Hase, F.; Schneider, M.; Boyd, I.; Calisesi, Y.; Godin, S.; Koopman, R.; Lambert, J.C.; Soebijanta, V.; Swart, D.; Raffalski, U.; Schets, H.; De Muer, D.; Stebel, K.; Steinbrecht, W.; Stubi, R.

2003

Comparison of methods for measuring atmospheric deposition of arsenic, cadmium, nickel and lead.

Aas, W.; Alleman, L.Y.; Bieber, E.; Gladtke, D.; Houdret, J.L.; Karlsson, V.; Monies, C.

2009

Comparison of mercury concentrations measured at several sites in the Southern Hemisphere.

Slemr, F.; Angot, H.; Dommergue, A.; Magand, O.; Barret, M.; Weigelt, A.; Ebinghaus, R.; Brunke, E. G.; Pfaffhuber, K. A.; Edwards, G.; Howard, D.; Powell, J.; Keywood, M.; Wang, F.

2015

2016

Comparison of ground-based BrO measurements during THESEO with the SLIMCAT chemical transport model. Air pollution research report, 73

Sinnhuber, B.-M.; Chipperfield, M.P.; Enell, C.-F.; Friess, U.; Hendrick, F.; Johnston, P.V.; Kreher, K.; Pfeilsticker, K.; Platt, U.; Richter, A.; South, A.; Tørnkvist, K.K.; Roozendael, M.V.; Wagner, T.; Wittrock, F.

2000

Comparison of GOMOS high-resolution temperature profiles (HRTP) with data from selected EQUAL lidar and radiosonde sites.

Stebel, K.; Hansen, G.; Meijer, Y.; Claude, H.; von der Gathen, P.; Keckhut, P.; Kyrö, E.; Leblanc, T.; Maturilli, M.; McDermid, I.S.; Neuber, R.; Pal, S.; Steinbrecht, W.; Strawbridge, K.; Swart, D.P.J.

2006

Publikasjon
År
Kategori