Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9758 publikasjoner. Viser side 329 av 391:

Publikasjon  
År  
Kategori

Forgiftet av en usynlig fiende

Herzke, Dorte (intervjuobjekt); Bergskaug, Elisabeth (journalist)

2021

A novel bottom-up global ship emission inventory for conventional and alternative fuels in a well-to-wake approach

Kramel, Diogo; Muri, Helene; Strømman, Anders Hammer; Kim, YoungRong; Lonka, Radek; Nielsen, Jørgen Bremnes; Ringvold, Anna; Bouman, Evert Alwin; Steen, Sverre

2021

Spredningsberegninger av luftforurensning fra Årdal Metallverk

Weydahl, Torleif

Rapporten presenterer oppdaterte spredningsberegninger for utslipp til luft fra Årdal Metallverk i Øvre Årdal. Utslippene er hentet fra utslippstillatelsen som en vurdering av «worst-case». Det er beregnet bakkekonsentrasjoner for SO2, støv og fluorider, samt metallkomponentene i utslippstillatelsen. Beregningene, som er basert på en konservativ metodikk, viser potensielt overskridelse av målsetningsverdier for nikkel og arsen i nærområdet til anlegget ved nivåene i utslippstillatelsen. Beregningene gir også fare for overskridelse for støv, men vurderingen er usikker fordi verken andelen PM2,5 og PM10 i utslippet eller bidraget fra øvrige kilder er kjent.

NILU

2021

Citizen science platforms

Liu, Hai-Ying; Dörler, Daniel; Heigl, Florian; Grossberndt, Sonja

2021

A Bad Start in Life? Maternal Transfer of Legacy and Emerging Poly- And Perfluoroalkyl Substances to Eggs in an Arctic Seabird.

Jouanneau, William; Leándri-Breton, Don-Jean; Corbeau, Alexandre; Herzke, Dorte; Moe, Børge; Nikiforov, Vladimir; Gabrielsen, Geir W.; Chastel, Olivier

2021

AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations

Gliss, Jonas; Mortier, Augustin; Schulz, Michael; Andrews, Elisabeth; Balkanski, Yves; Bauer, Susanne E.; Benedictow, Anna Maria Katarina; Bian, Huisheng; Checa-Garcia, Ramiro; Chin, Mian; Ginoux, Paul; Griesfeller, Jan; Heckel, Andreas; Kipling, Zak; Kirkevåg, Alf; Kokkola, Harri; Laj, Paolo G.; Sager, Philippe Le; Lund, Marianne Tronstad; Myhre, Cathrine Lund; Matsui, Hitoshi; Myhre, Gunnar; Neubauer, David; Noije, Twan van; North, Peter; Oliviè, Dirk Jan Leo; Remy, Samuel; Sogacheva, Larisa; Takemura, Toshihiko; Tsigaridis, Kostas; Tsyro, Svetlana

Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes.
Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50 % decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2∕3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1.
Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AODf, AODc), Ångström exponent (AE), dry surface scattering (SCdry), and absorption (ACdry) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21 % ± 20 % (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from −37 % (MODIS-Terra) to −16 % (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R>0.75), suggesting that the models are capable of capturing spatio-temporal variations in AOD. We find a much larger underestimate in coarse AODc (∼ −45 % ± 25 %) than in fine AODf (∼ −15 % ± 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AODc bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AODc.
Column AEs are underestimated by about 10 % ± 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140 % if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment.
Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of −35 % ± 25 % and −20 % ± 18 % for SCdry and ACdry, respectively. The larger underestimate of SCdry than ACdry suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models.
Considerable ...

2021

Optimised Aerosol Fraction Separation in Arctic Aerosol for Radiocarbon Measurement

Rauber, Martin; Salazar, G.; Yttri, Karl Espen; Szidat, S.

2021

Combining Sentinel-5P and Ground Measurements to estimate surface NO2 Concentrations over Europe Using Machine Learning Models

Shetty, Shobitha; Schneider, Philipp; Stebel, Kerstin; Kylling, Arve; Hamer, Paul David; Berntsen, Terje Koren

2021

Finding essentiality feasible: common questions and misinterpretations concerning the “essential-use” concept

Cousins, Ian T.; Dewitt, Jamie C.; Glüge, Juliane; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Miller, Mark; Ng, Carla A.; Patton, Sharyle; Scheringer, Martin; Trier, Xenia; Wang, Zhanyun

Royal Society of Chemistry (RSC)

2021

Aircraft-based Mass Balance Estimate of Methane Emissions from Offshore Gas Facilities in the Southern North Sea

Pühl, Magdalena; Roiger, Anke; Fiehn, Alina; Negron, Alan M. Gorchov; Kort, Eric A.; Schwietzke, Stefan; Pisso, Ignacio; Foulds, Amy; Lee, James D; France, James L.; Allen, Grant

2021

Datarapport: Analyse av Gadolinium, Komp-540 og Ioheksol i miljøprøver. DNV-prosjekt: Overvåking utenfor Ramslandsvågen 2021.

Vik, Aasmund Fahre; Pfaffhuber, Katrine Aspmo; Davanger, Kirsten; Rostkowski, Pawel; Gundersen, Hans; Bjørklund, Morten; Uggerud, Hilde Thelle; Vadset, Marit; Bjørneby, Stine Marie

NILU

2021

Spatial distribution of residential wood combustion emissions in the Nordic countries: How well national inventories represent local emissions?

Paunu, Ville-Veikko; Karvosenoja, Niko; Segersson, David; Lopez-Aparicio, Susana; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Thorsteinsson, Throstur; Niemi, Jarkko V; Vo, Dam Thanh; van der Gon, Hugo A.C. Denier; Brandt, Jørgen; Geels, Camilla

Elsevier

2021

Characterization of inhalation exposure to gaseous elemental mercury during artisanal gold mining and e-waste recycling through combined stationary and personal passive sampling

Snow, Melanie A.; Darko, Godfred; Gyamfi, Opoku; Ansah, Eugene; Breivik, Knut; Hoang, Christopher; Lei, Ying Duan; Wania, Frank

Royal Society of Chemistry (RSC)

2021

The SCCS Notes of Guidance for the testing of cosmetic ingredients and their safety evaluation, 11th revision, 30–31 March 2021, SCCS/1628/21

Bernauer, Ulrike; Bodin, Laurent; Chaudhry, Qasim; Coenraads, Pieter Jan; Dusinska, Maria; Ezendam, Janine; Gaffet, Eric; Galli, Corrado Lodovico; Granum, Berit; Panteri, Eirini; Rogiers, Vera; Rousselle, Christophe; Stepnik, Maciej; Vanhaecke, Tamara; Wijnhoven, Susan

Elsevier

2021

Expression of DNA repair genes in arctic char (Salvelinus alpinus) from Bjørnøya in the Norwegian Arctic

Inderberg, Helene; Neerland, Eirik D.; Mcpartland, Molly; Sparstad, Torfinn; Bytingsvik, Jenny; Nikiforov, Vladimir; Evenset, Anita; Krøkje, Åse

Academic Press

2021

Car Tires Contain a Cocktail of Chemicals: Their Characterization, Leaching and Bioavailability

Booth, Andy; Sørensen, Lisbet; Halsband-Lenk, Claudia; Herzke, Dorte

2021

Springtime nitrogen oxides and tropospheric ozone in Svalbard: local and long-range transported air pollution

Dekhtyareva, Alena; Hermanson, Mark H.; Nikulina, Anna; Hermansen, Ove; Svendby, Tove Marit; Holmén, Kim; Graversen, Rune

Svalbard is a near pristine Arctic environment, where long-range transport from mid-latitudes is an
important air pollution source. Thus, several previous studies investigated the background
nitrogen oxides (NO x ) and tropospheric ozone (O 3 ) springtime chemistry in the region. However,
there are also local anthropogenic emission sources on the archipelago such as coal power plants,
ships and snowmobiles, which may significantly alter in situ atmospheric composition.
Measurement results from three independent research projects were combined to identify the
effect of emissions from various local sources on the background concentration of NO x and O 3 in
Svalbard. The hourly meteorological and chemical data from the ground-based stations in
Adventdalen, Ny-Ålesund and Barentsburg were analysed along with daily radiosonde soundings
and weekly data from O 3 sondes. The data from the ERA5 reanalysis were used to evaluate the
prevailing synoptic conditions during the fieldwork. Although the correlation between the NO x
concentrations in the three settlements was low due to dominant influence of the local
atmospheric circulation, cases with common large-scale meteorological conditions increasing the
local pollutant concentration at all sites were identified. In colder and calmer days and days with
temperature inversions, the concentrations of NO x were higher. In contrast to NO x values, O 3
concentrations in Barentsburg and at the Zeppelin station in Ny-Ålesund correlated strongly, and
hence the prevailing synoptic situation and long-range transport of air masses were controlling
factors for them. The Lagrangian models HYSPLIT and FLEXPART have been used to investigate air
mass transport and transformations during the large scale O 3 depletion and enrichment events.
The factors affecting Arctic springtime photochemistry of O 3 have been investigated thoroughly
using Lagrangian and Eulerian numerical weather prediction model data and Metop GOME-2
satellite observations.

2021

How will the new WHO air quality guidelines for PM2.5 affect the health risk assessment by the European Environment Agency

Soares, Joana; Gsella, Artur; Horálek, Jan; Guerreiro, Cristina; Ortiz, Alberto González

2021

Publikasjon
År
Kategori