Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9850 publikasjoner. Viser side 338 av 394:

Publikasjon  
År  
Kategori

Validation of Smiles HCl Profiles Over a Wide Range from the Stratosphere to the Lower Thermosphere

Nara, Seidai; Sato, Tomohiro O.; Yamada, Takayoshi; Froidevaux, Lucien; Livesey, Nathaniel J.; Walker, Kaley A.; Schreier, Franz; Xu, Jian; Orsolini, Yvan J.; Limpasuvan, Varavut; Kuno, Nario; Kasai, Yasuko

2021

Increased soil N2O emissions from the Arctic-Boreal region: A non-negligible non-carbon climate feedback

Pan, Naiqing; Tian, Hanqin; Pan, Shufen; Shi, Hao; Canadell, Josep G; Chang, Jinfeng; Ciais, Philippe; Davidson, Eric A.; Hugelius, Gustaf; Ito, Akihiko; Jackson, Robert B.; Joos, Fortunat; Millet, Dylan B.; Olin, Stefan; Patra, Prabir K.; Thompson, Rona Louise; Wells, Kelley C.; Wilson, Chris J.; Zaehle, Sönke

2021

Interim European air quality maps for 2020. PM10, NO2 and ozone spatial estimates based on non-validated UTD data.

Horálek, Jan; Schreiberova, Marketa; Vlasakova, Leona; Hamer, Paul David; Schneider, Philipp; Markova, Jana

The report provides interim 2020 maps for PM10 annual average, NO2 annual average and the ozone indicator SOMO35. The maps have been produced based on non-validated Up-To-Date data reported to the AQ e-reporting database (data flow E2a), the CAMS Ensemble Forecast modelling data and other supplementary data including air quality data reported to EMEP. In addition to concentration maps, the inter-annual differences between the years 2019 and 2020 are presented (using the 2019 regular and the 2020 interim maps), as well as European exposure estimates based on the interim maps. The contribution of lockdown measures connected with the Covid-19 pandemic on the change of air pollutant concentrations during the exceptional year 2020 is briefly discussed. The decrease in road transport, aviation and international shipping intensity during the lockdown resulted in a reduction of the NOx emission, mainly in large cities and urbanized areas. Compared to 2019, a general decrease in NO2 annual average concentrations is shown for 2020, as well as a decrease in values of the ozone indicator SOMO35, apart from areas with a steep NO2 decrease. Due to the chemical processes, the decrease in NOX resulted in an ozone increase in these areas. The contribution of lockdown measures on the change of PM10 concentrations is quite complex. On the one hand, there was a decrease in emissions of suspended particles and their precursors due to decrease in transport. On the other hand, higher intensity of residential heating likely led to higher emissions of both suspended particles and their precursors.

ETC/ATNI

2021

Editorial for the Special Issue From Nanoinformatics to Nanomaterials Risk Assessment and Governance

Lynch, Iseult; Afantitis, Antreas; Greco, Dario; Dusinska, Maria; Banares, Miguel A.; Melagraki, Georgia

MDPI

2021

Målinger av PM10 i Lohavn. April og mai 2020.

Hak, Claudia; Tønnesen, Dag

On behalf of Hav Eiendom, NILU – Norwegian Institute for Air Research carried out measurements of particulate matter (PM10) in Lohavn in Oslo. The area will be developed into a new urban area with residential buildings, school, outdoor areas and businesses. The PM-concentration was measured at three locations in Lohavn to map the PM-distribution and possible sources. The measurement project took place in spring 2020. Possible effects of Covid-shutdown, variations in amount of traffic in the area and meteorological variations on the PM concentration are discussed.

The measurement results show a lower PM-concentration than in the measurement period 2016/17. The reason was probably the disappearance of temporary sources which led to periodically high concentrations in 2016/17. The highest PM10-concentrations were observed with winds from the south-southwest (which dominates during the day).

NILU

2021

Målinger av SO2 i omgivelsene til Elkem Carbon og REC Solar. Januar 2020 – desember 2020.

Hak, Claudia; Teigland, Even Kristian; Andresen, Erik

On behalf of Elkem Carbon AS, NILU has carried out measurements of SO2 in the surroundings of Elkem Carbon and REC Solar in Vågsbygd (Kristiansand municipality). The companies were ordered by the Norwegian Environment Agency to carry out SO2-measurements in ambient air. The measurements were performed with an SO2-monitor in the residential area at
Fiskåtangen (Konsul Wilds vei) and with passive SO2-samplers at 6 locations around the industries. The report covers
measurements in the period 1 January 2020 – 31 December 2020.
Norwegian limit values for air quality (SO2) were complied with at Konsul Wilds vei for all averaging periods required by the air quality directive (annual average, winter average, daily average and hourly average). The most polluted locations during the measurement period were Konsul Wilds vei and Fiskåveien just south of the industries.

NILU

2021

Modeling study of the impact of SO2 volcanic passive emissions on the tropospheric sulfur budget

Lamotte, Claire; Guth, Jonathan; Marécal, Virginie; Cussac, Martin; Hamer, Paul David; Theys, Nicolas; Schneider, Philipp

Well constrained volcanic emissions inventories in chemistry transport models are necessary to study the impacts induced by these sources on the tropospheric sulfur composition and on sulfur species concentrations and depositions at the surface. In this paper, the changes induced by the update of the volcanic sulfur emissions inventory are studied using the global chemistry transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle). Unlike the previous inventory (Andres and Kasgnoc, 1998), the updated one (Carn et al., 2016, 2017) uses more accurate information and includes contributions from both passive degassing and eruptive emissions. Eruptions are provided as daily total amounts of sulfur dioxide (SO2) emitted by volcanoes in the Carn et al. (2016, 2017) inventories, and degassing emissions are provided as annual averages with the related mean annual uncertainties of those emissions by volcano. Information on plume altitudes is also available and has been used in the model. We chose to analyze the year 2013, for which only a negligible amount of eruptive volcanic SO2 emissions is reported, allowing us to focus the study on the impact of passive degassing emissions on the tropospheric sulfur budget. An evaluation against the Ozone Monitoring Instrument (OMI) SO2 total column and MODIS (Moderate-Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) observations shows the improvements of the model results with the updated inventory. Because the global volcanic SO2 flux changes from 13 Tg yr−1 in Andres and Kasgnoc (1998) to 23.6 Tg yr−1 in Carn et al. (2016, 2017), significant differences appear in the global sulfur budget, mainly in the free troposphere and in the tropics. Even though volcanic SO2 emissions represent 15 % of the total annual sulfur emissions, the volcanic contribution to the tropospheric sulfate aerosol burden is 25 %, which is due to the higher altitude of emissions from volcanoes. Moreover, a sensitivity study on passive degassing emissions, using the annual uncertainties of emissions per volcano, also confirmed the nonlinear link between tropospheric sulfur species content with respect to volcanic SO2 emissions. This study highlights the need for accurate estimates of volcanic sources in chemistry transport models in order to properly simulate tropospheric sulfur species.

2021

A strategy towards the generation of testable adverse outcome pathways for nanomaterials

Murugadoss, Sivakumar; Vrcek, Ivana Vinkovic; Pem, Barbara; Jagiello, Karolina; Judzinska, Beata; Sosnowska, Anita; Martens, Marvin; Willighagen, Egon L.; Puzyn, Tomasz; Dusinska, Maria; Cimpan, Mihaela-Roxana; Fessard, Valérie; Hoet, Peter H.

2021

The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2017

Petrescu, Ana Maria Roxana; Qiu, Chunjing; Ciais, Philippe; Thompson, Rona Louise; Peylin, Philippe; McGrath, Matthew J; Solazzo, Efisio; Janssens-Maenhout, Greet; Tubiello, Francesco N.; Bergamaschi, Peter; Brunner, Dominik; Peters, Glen Philip; Hoglund-Isaksson, Lena; Regnier, Pierre; Lauerwald, Ronny; Bastviken, David; Tsuruta, Aki; Winiwarter, Wilfried; Patra, Prabir K.; Kuhnert, Matthias; Oreggioni, Gabriel David; Crippa, Monica; Saunois, Marielle; Perugini, Lucia; Markkanen, Tiina; Aalto, Tuula; Zwaaftink, Christine Groot; Yao, Yuanzhi; Wilson, Chris; Conchedda, Giulia; Günther, Dirk; Leip, Adrian; Smith, Pete; Haussaire, Jean-Matthieu; Leppänen, Antti; Manning, Alistair J.; McNorton, Joe; Brockmann, Patrick; Dolman, Albertus Johannes

2021

Innemiljø & miljøgifter

Bohlin-Nizzetto, Pernilla

2021

Environmental Contaminants in an Urban Fjord, 2020

Grung, Merete; Jartun, Morten; Bæk, Kine; Ruus, Anders; Rundberget, Thomas; Allan, Ian; Beylich, Bjørnar; Vogelsang, Christian; Schlabach, Martin; Hanssen, Linda; Borgå, Katrine; Helberg, Morten

This programme, “Environmental Contaminants in an Urban Fjord” has covered sampling and analyses of sediment and organisms in a marine food web of the Inner Oslofjord, in addition to samples of blood and eggs from herring gull. The programme also included inputs of pollutants via surface water (stormwater), and effluent water and sludge from a wastewater treatment plant. The bioaccumulation potential of the contaminants in the Oslo fjord food web was evaluated. The exposure to/accumulation of the contaminants was also assessed in birds. A vast number of chemical parameters have been quantified, in addition to some biological effect parameters in cod, and the report serves as a status description of the concentrations of these chemicals in different compartments of the Inner Oslofjord marine ecosystem.

Norsk institutt for vannforskning

2021

Estimation of the historical dry deposition of air pollution indoors to the monumental paintings by Edvard Munch in the University Aula, in Oslo, Norway

Grøntoft, Terje; Frøysaker, Tine

The historical (1835–2020) deposition of major air pollutants (SO2, NOx, O3 and PM2.5) indoors, as represented by the monumental Edvard Munch paintings (c. 220 m2) installed in 1916 in the Oslo University Aula in Norway, were approximated from the outdoor air concentrations, indoor to outdoor concentration ratios and dry deposition velocities. The annual deposition of the pollutants to the paintings was found to have been 4–25 times lower than has been reported to buildings outdoors in the urban background in the centre of Oslo. It reflected the outdoor deposition but varied less, from 0.3 to 1.2 g m−2 a−1. The accumulated deposition since 1916, and then not considering the regularly performed cleaning of the paintings, was found to have been 43 ± 13 g m−2, and 110 ± 40 g m−2 in a similar situation since 1835. The ozone deposition, and the PM2.5 deposition before the 1960s, were a relatively larger part of the accumulated total indoor (to the paintings) than reported outdoor deposition. About 18 and 33 times more O3 than NOx and PM2.5 deposition was estimated to the paintings in 2020, as compared to the about similar reported outdoor dry deposition of O3 and NOx. The deposition of PM2.5 to the paintings was probably reduced with about 62% (50–80%) after installation of mechanical filtration in 1975 and was estimated to be 0.011 (± 0.006) g m−2 in 2020.

BioMed Central (BMC)

2022

ACTRIS – Towards a global research infrastructure

Myhre, Cathrine Lund; Saponaro, Giulia; Laj, Paolo G.; Juurola, Eija

2022

NORDUST - On TWP size distribution

Yttri, Karl Espen; Grythe, Henrik; Vogt, Matthias; Dauge, Franck Rene; Herzke, Dorte; Gustafsson, Mats

2022

Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual report 2021.

Svendby, Tove Marit; Hansen, Georg H.; Bernet, Leonie; Bäcklund, Are; Nilsen, Anne-Cathrine; Schulze, Dorothea; Johnsen, Bjørn

This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV-measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. The year 2021 was characterized by low total ozone values in June and July, whereas “normal” ozone values were measured during winter and spring.

NILU

2022

Clean air policies are key for successfully mitigating Arctic warming

von Salzen, Knut; Whaley, Cynthia; Anenberg, Susan C.; Van Dingenen, Rita; Klimont, Zbigniew; Flanner, Mark G.; Mahmood, Rashed; Arnold, Stephen R.; Beagley, Stephen; Chien, Rong-You; Christensen, Jesper H.; Eckhardt, Sabine; Ekman, Annica M. L.; Evangeliou, Nikolaos; Faluvegi, Greg; Fu, Joshua S.; Gauss, Michael; Gong, Wanmin; Hjorth, Jens; Im, Ulas; Krishnan, Srinath; Kupiainen, Kaarle; Kuhn, Thomas; Langner, Joakim; Law, Kathy S.; Marelle, Louis; Oliviè, Dirk Jan Leo; Onishi, Tatsuo; Oshima, Naga; Paunu, Ville-Veikko; Peng, Yiran; Plummer, David; Pozzoli, Luca; Rao-Skirbekk, Shilpa; Raut, Jean-Christophe; Sand, Maria; Schmale, Julia; Sigmond, Michael; Thomas, Manu Anna; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T.; Wang, Minqi; Winter, Barbara

A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reductions. Fossil fuel use is projected to rapidly decline in an increasingly sustainable world, resulting in far-reaching air quality benefits. Despite human health benefits, reductions in sulfur emissions in a more sustainable world could enhance Arctic warming by 0.8 °C in 2050 relative to the 1995–2014, thereby offsetting climate benefits of greenhouse gas reductions. Targeted and technically feasible emissions reduction opportunities exist for achieving simultaneous climate and human health co-benefits. It would be particularly beneficial to unlock a newly identified mitigation potential for carbon particulate matter, yielding Arctic climate benefits equivalent to those from carbon dioxide reductions by 2050.

Springer Nature

2022

Plastic ingestion and associated additives in Faroe Islands chicks of the Northern Fulmar Fulmarus glacialis

Collard, France; Leconte, Simon; Danielsen, Jóhannis; Halsband, Claudia; Herzke, Dorte; Harju, Mikael; Tulatz, Felix; Gabrielsen, Geir W.; Tarroux, Arnaud

2022

Publikasjon
År
Kategori