Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10000 publikasjoner. Viser side 35 av 400:

Publikasjon  
År  
Kategori

Analysis of per- and polyfluorinated substances in articles. Nordiske Arbejdspapirer, 2015:911

Blom, C.; Hanssen, L.

2015

Analysis of polychlorinated n-alkanes (PCAs) in food from the Swedish market

Beloqui, Idoia; Yuan, Bo; Borgen, Anders; Bohlin-Nizzetto, Pernilla; Wang, Thanh

2024

Analysis of Polycyclic Aromatic Hydrocarbon Emissions from a Pilot Scale Silicon Process with Flue Gas Recirculation

Arnesen, Kamilla; Vachaparambil, Kurian Jomy; Andersen, Vegar; Panjwani, Balram; Jakovljevic, Katarina; Enge, Ellen Katrin; Gaertner, Heiko; Aarhaug, Thor Anders; Einarsrud, Kristian Etienne; Tranell, Maria Gabriella

Flue gas recirculation (FGR) is a method used in several industries to control emissions and process conditions, such as NOx reduction and temperature levels, and increase the CO2 concentration in the off-gas, to be better suited for methods of carbon capture. In this study, the influence of FGR, varying levels of flue gas flow and oxygen concentration on the emissions of polycyclic aromatic hydrocarbons (PAHs) was investigated during Si alloy production. In addition, computational fluid dynamics (CFD) modeling was performed using OpenFOAM for combustion of C2H2 and H2 with varying O2 levels to simulate FGR and to gain better insight into the impact of furnace operations on the PAH evolution. Experimental results show that increasing FGR (0–82.5%) and decreasing levels of oxygen (20.7–13.3 vol %) increase the PAH-42 concentration from 14.1 to 559.7 μg/Nm3. This is supported by the simulations, where increased formation of all PAHs species was observed at high levels of FGR, especially for the lighter aromatic species (like benzene and naphthalene), due to the lower availability of oxygen and the reduction in temperature. Residence time was identified as another key parameter to promote complete combustion of PAHs. Benzene oxidation can be prevented with temperatures lower than 1000 K and residence times smaller than 1 s, while complete oxidation is found at temperatures of around 1500 K.

2023

Analysis of polycyclic musks and their transformation products. Poster presentation. NILU F

During, S.D.; Hühnerfuss, H.; Kallenborn, R.; König, W.A.; Sydnes, L.K.; Valdersnes, S.

2003

Analysis of public interest in environmental health information: Fine tuning content for dissemination via social media. Lecture Notes in Computer Science, Vol. 10078

Liu, H.-Y.; Eleta, I.; Kobernus, M.; Cole-Hunter, T.

2016

Analysis of source regions and transport pathways of sub-micron aerosol components in Europe

Schneider, Michelle Y.; Jiang, Jianhui; Chen, Ying; Aas, Wenche; Atabakhsh, Samira; Aurela, Minna; Belis, Claudio; Bougiatioti, Aikaterini; Bressi, Michael; Canonaco, Francesco; Chazeau, Benjamin; Chebaicheb, Hasna; Ehn, Mikael; Eleftheriadis, Konstantinos; Favez, Olivier; Flentje, Harald; Font, Anna; Freney, Evelyn; Gilardoni, Stefania; Gini, Maria I.; Green, David C.; Heikkinen, Liine; Keernik, Hannes; Lhotka, Radek; Lin, Chunshui; Maasikmets, Marek; Marchand, Nicolas; Minguillón, María Cruz; Necki, Jaroslaw; Ovadnevaite, Jurgita; Paglione, Marco; Pauraite, Julija; Petit, Jean-Eudes; Pikridas, Michael; Platt, Stephen Matthew; Pokorná, Petra; Poluzzi, Vanes; Poulain, Laurent; Riffault, Véronique; Rinaldi, Matteo; Sciare, Jean; Sosedova, Yulia; Stavroulas, Iasonas; Timonen, Hilkka; Tobler, Anna; Vasilescu, Jeni; Via, Marta; Vodička, Petr; Zhang, Yunjiang; Zografou, Olga; Daellenbach, Kaspar Rudolf; Upadhyay, Abhishek; Chen, Gang I.; Manousakas, Manousos-Ioannis; Haddad, Imad El; Prévôt, André S.H.

It is important to study aerosols and their origins, as they pose various negative health and environmental impacts. In this study, we combined year-long datasets from 15 different countries with Trajectory Statistical Methods (TSMs) for the first time at this comprehensive scale. We found possible source regions and seasonal variations of various particulate matter (PM) components in Europe, including total organic aerosol (OA), biomass burning OA (BBOA), oxygenated OA (OOA), ammonium (NH4), nitrate (NO3), and sulphate (SO4). We found that for all of the studied components, Eastern Europe was among the highest contributors. For NO3, other important source regions were Northern France and the Benelux, while for SO4 there were significant contributions from the Mediterranean region. We also compared our measurement-based model with simulated concentrations of an atmospheric chemistry transport model (CAMx). We observed a satisfactory agreement in regions where we had sufficient coverage with air pollution monitoring stations. The main deviations for OA were found around the Po Valley, where CAMx consistently estimated higher concentrations, while the TSM analysis did not highlight it as a hotspot because long-term monitoring datasets in this region are lacking. CAMx also underestimated the concentrations around Poland, mainly from residential burning. Our results provide opportunities to refine European emission inventories and deliver valuable information on long-range transported air pollutants. This work suggests that policies mitigating air pollution in Eastern Europe and the Benelux could help improve overall air quality in entire Europe more efficiently.

2025

Analysis of station classification and network design in Europe. ETC/ACM Technical Paper, 2013/18

Malherbe, L.; Ung, A.; Schneider, P.; Jimmink, B.; de Leeuw, F.

2013

Analysis of station classification. ETC/ACM Technical Paper, 2012/17

Malherbe, L.; Ung, A.; Schneider, P.; de Leeuw, F.

2013

Analysis of the effect of indoor environment on pupils’ health in one Norwegian school during COVID-19 pandemic

Ulvestad, Anita; Cao, Guangyu; Gustavsen, Kai; Vogt, Matthias; Rismyhr, Tore; Yang, Zhirong

The aim of this project is to investigate and predict the quantified effect of indoor environment on pupils’ health in schools in Norway during the COVID-19 pandemic. The results are based on field measurements of the indoor environment in a Norwegian school. In addition, a survey (Mitt Inneklima) from NAAF was given to the pupils, and the result was investigated by using a machine learning model. From the field measurements it was found that the indoor temperature was generally too high, the relative humidity was too low, and the CO2- concentration was typically below 1000 ppm. The survey shows that more pupils are experiencing various indoor climate problems every week compared to the reference school for almost all of the parameters. By using machine learning, it is found that Too hot is an important feature for 11 of the 12 health problems, while Dry air is an important feature for nine of them.

2021

Analysis of variability in atmospheric methane in the Arctic.

Thompson, R.; Stohl, A.; Myhre, C.L.; Fisher, R.; Lowry, D.; Nisbet, E.; Aalto, T.; Dlugokencky, E.; Crotwell, A.

2014

Analysis of variability in atmospheric methane in the Arctic. NILU PP

Thompson, R.; Stohl, A.; Myhre, C.L.; Fisher, R.; Lowry, D.; Nisbet, E.; Aalto, T.; Dlugokencky, E.; Crotwell, A.

2014

Analytical challenges hamper perfluoroalkyl research.

Martin, J.W.; Kannan, K.; Berger, U.; de Voogt, P.; Field, J.; Franklin, J.; Giesy, J.P.; Harner, T.; Muir, D.C.G.; Scott, B.; Kaiser, M.; Järnberg, U.; Jones, K.C., Mabury, S.A.; Schroeder, H.; Simcik, M.; Sottani, C.; van Bavel, B.; Kärrman, A., Lindström, G.; van Leeuwen, S.

2004

Analytical chemistry

Hanssen, Linda

2022

2001

2002

2003

Publikasjon
År
Kategori