Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9878 publikasjoner. Viser side 354 av 396:

Publikasjon  
År  
Kategori

Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2022

Timmermann, Volkmar; Børja, Isabella; Clarke, Nicholas; Gohli, Jostein; Hietala, Ari Mikko; Jepsen, Jane Uhd; Krokene, Paal; Lislegård, Harald Haga; Nagy, Nina Elisabeth; Nyeggen, Hans; Solberg, Sverre; Solheim, Halvor; Solvin, Thomas Mørtvedt; Svensson, Arvid; Tollefsrud, Mari Mette; Vindstad, Ole Petter Laksforsmo; Økland, Bjørn; Aas, Wenche

Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2022 og trender over tid for følgende temaer:
(i) Landsrepresentativ skogovervåking;
(ii) Intensiv skogovervåking;
(iii) Overvåking av bjørkemålere i Troms og Finnmark;
(iv) Barkbilleovervåkingen;
(v) Furuvednematode;
(vi) Askeskuddsyke;
(vii) Andre spesielle skogskader i 2022.

NIBIO

2023

The Impacts of Third Pole Snow Assimilation on Seasonal Meteorology Predictions

Li, Wei; Li, Lu; Jie, Chen; Orsolini, Yvan Joseph Georges Emile G.; de Rosnay, Patricia; Senan, Retish

2023

Røyk fra Canada kommer fortsatt inn over Norge

Solbakken, Christine Forsetlund

Norges forskningsråd

2023

Forecast products for BC and dust

Evangeliou, Nikolaos; Eckhardt, Sabine; Zwaaftink, Christine Groot; Sollum, Espen

2023

Observations and Retrievals of Volcanic Ash Clouds Using Ground- and Satellite-Based Sensors

Mereu, Luigi; Scollo, Simona; Bonadonna, Costanza; Corradini, Stefano; Donnadieu, Franck; Montopoli, Mario; Vulpiani, Gianfranco; Barsotti, Sara; Freret-Lorgeril, Valentin; Gudmundsson, Magnús Tumi; Kylling, Arve; Ripepe, Maurizio

2023

Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors

Jørstad, Per Martin; Wojcikowski, Marek; Cao, Tuan-Vu; Lepioufle, Jean-Marie; Wojtkiewicz, Krystian; Ha, Hoai Phuong

2023

Long-term observations of aerosol optical depth and their relation to in-situ aerosol properties in the Svalbard region (LOAD-RIS)

Hansen, Georg H.; Kouremeti, Natalia; Gilardoni, Stefania; Stebel, Kerstin; Evangeliou, Nikolaos; Ritter, Christoph; Zielinski, Tymon; Herrero, Sara; Kazadzis, Stelios; Mateos, David; Mazzola, Mauro; Pakszys, Paulina; Eleftheriadis, Konstantinos

Aerosols are an important constituent of the atmosphere both influencing the climate system and contributing to increasing pollution of the Arctic. At the same time, their adequate monitoring is a big challenge, as instruments on the ground only can sample aerosols in the lowermost atmosphere. For this reason, these measurements are complemented with observations of aerosol optical depth (AOD) which quantify the total amount of aerosols throughout the atmosphere from the attenuation of direct sunlight (and moonlight). This procedure requires extremely careful instrument calibration and removal of cloud contaminated data. In Svalbard, such measurements have been performed by several research groups with different instruments, mostly in Ny-Ålesund and in Hornsund, but also on research vessels offshore. In the framework of the SSF Strategic Grant project ReHearsol, all AOD data from the Svalbard region since 2002 have been collected and made available to the SIOS research community. They indicate that number and intensity of Arctic haze episodes occurring in late winter and spring have decreased consistently and significantly in the last 20 years, while pollution events in summer/early autumn, caused by boreal biomass burning, are on the rise, though not as consistently. Comparison between in-situ measurements at Gruvebadet Atmosphere Laboratory in Ny-Ålesund and AOD measurements indicate that most (more than 65%) of the episodes with high aerosol load are not captured by surface measurements. This finding does not change when one includes in-situ measurements at Zeppelin Observatory (475 m a.s.l.). Studying extensive high-AOD episodes such as those in summer 2019 requires a multi-tool approach including in-situ and remote-sensing measurements combined with model tools.

2023

Genotoxic effects of occupational exposure to glass fibres - A human biomonitoring study.

Ceppi, Marcello; Smolkova, Bozena ; Staruchova, Marta; Kazimirova, Alena; Barancokova, Magdalena; Volkovova, Katarina; Collins, Andrew Richard; Kocan, Anton; Dzupinkova, Zuzana; Horska, Alexandra; Buocikova, Verona; Tulinska, Jana; Liskova, Aurelia; Mikusova, Miroslava Lehotska; Krivosikova, Zora; Wsolova, Ladislava; Kuba, Daniel; Rundén-Pran, Elise; El Yamani, Naouale; Longhin, Eleonora Marta; Halasova, Erika; Kyrtopoulos, Soterios; Bonassi, Stefano ; Dusinska, Maria

As part of a large human biomonitoring study, we conducted occupational monitoring in a glass fibre factory in Slovakia. Shopfloor workers (n = 80), with a matched group of administrators in the same factory (n = 36), were monitored for exposure to glass fibres and to polycyclic aromatic hydrocarbons (PAHs). The impact of occupational exposure on chromosomal aberrations, DNA damage and DNA repair, immunomodulatory markers, and the role of nutritional and lifestyle factors, as well as the effect of polymorphisms in metabolic and DNA repair genes on genetic stability, were investigated.

The (enzyme-modified) comet assay was employed to measure DNA strand breaks (SBs) and apurinic sites, oxidised and alkylated bases. Antioxidant status was estimated by resistance to H2O2-induced DNA damage. Base excision repair capacity was measured with an in vitro assay (based on the comet assay).

Exposure of workers to fibres was low, but still was associated with higher levels of SBs, and SBs plus oxidised bases, and higher sensitivity to H2O2. Multivariate analysis showed that exposure increased the risk of high levels of SBs by 20%. DNA damage was influenced by antioxidant enzymes catalase and glutathione S-transferase (measured in blood). DNA repair capacity was inversely correlated with DNA damage and positively with antioxidant status. An inverse correlation was found between DNA base oxidation and the percentage of eosinophils (involved in the inflammatory response) in peripheral blood of both exposed and reference groups. Genotypes of XRCC1 variants rs3213245 and rs25487 significantly decreased the risk of high levels of base oxidation, to 0.50 (p = 0.001) and 0.59 (p = 0.001), respectively.

Increases in DNA damage owing to glass fibre exposure were significant but modest, and no increases were seen in chromosome aberrations or micronuclei. However, it is of concern that even low levels of exposure to these fibres can cause significant genetic damage.

2023

Deployment and Evaluation of a Network of Open Low-Cost Air Quality Sensor Systems

Schneider, Philipp; Vogt, Matthias; Haugen, Rolf; Hassani, Amirhossein; Castell, Nuria; Dauge, Franck Rene; Bartonova, Alena

Low-cost air quality sensors have the potential to complement the regulatory network of air quality monitoring stations, with respect to increased spatial density of observations, however, their data quality continues to be of concern. Here we report on our experience with a small network of open low-cost sensor systems for air quality, which was deployed in the region of Stavanger, Norway, under Nordic winter conditions. The network consisted of AirSensEUR sensor systems, equipped with sensors for, among others, nitrogen dioxide and fine particulate matter. The systems were co-located at an air quality monitoring station, for a period of approximately six weeks. A subset of the systems was subsequently deployed at various roadside locations for half a year, and finally co-located at the same air quality monitoring station again, for a post-deployment evaluation. For fine particulate matter, the co-location results indicate a good inter-unit consistency, but poor average out-of-the-box performance (R2 = 0.25, RMSE = 9.6 μ
g m−3). While Köhler correction did not significantly improve the accuracy in our study, filtering for high relative humidity conditions improved the results (R2 = 0.63, RMSE = 7.09 μg m−3). For nitrogen dioxide, the inter-unit consistency was found to be excellent, and calibration models were developed which showed good performance during the testing period (on average R2 = 0.98, RMSE = 5.73 μg m−3), however, due to the short training period, the calibration models are likely not able to capture the full annual variability in environmental conditions. A post-deployment co-location showed, respectively, a slight and significant decrease in inter-sensor consistency for fine particulate matter and nitrogen dioxide. We further demonstrate, how observations from even such a small network can be exploited by assimilation in a high-resolution air quality model, thus adding value to both the observations and the model, and ultimately providing a more comprehensive perspective of air quality than is possible from either of the two input datasets alone. Our study provides valuable insights on the operation and performance of an open sensor system for air quality, particularly under challenging Nordic environmental conditions.

MDPI

2023

Energetic Particle Precipitation reflected in the Global Secondary Ozone distribution

Jia, Jia; Murberg, Lise Eder; Løvset, Tiril; Orsolini, Yvan Joseph Georges Emile G.; Espy, Patrick Joseph; Salinas, Jude; Lee, Jae N.; Wu, Dong; Zhang, Jiarong

2023

The Atmospheric Fate of TBECH: Spatial Patterns, Seasonal Variability, and Deposition to Canadian Coastal Regions

Oh, Jenny; Zhan, Faqiang; Li, Yuening; Shunthirasingham, Chubashini; Lei, Ying Duan; Dalpé-Castilloux, Abigaëlle; Lu, Zhe; Lee, Kelsey; Gobas, Frank; Eckhardt, Sabine; Alexandrou, Nick; Hung, Hayley; Wania, Frank

2023

Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air

Gossmann, Isabel; Herzke, Dorte; Held, Andreas; Schulz, Janina; Nikiforov, Vladimir; Georgi, Christoph; Evangeliou, Nikolaos; Eckhardt, Sabine; Gerdts, Gunnar; Wurl, Oliver; Scholz-Böttcher, Barbara

Few studies report the occurrence of microplastics (MP), including tire wear particles (TWP) in the marine atmosphere, and little data is available regarding their size or sources. Here we present active air sampling devices (low- and high-volume samplers) for the evaluation of composition and MP mass loads in the marine atmosphere. Air was sampled during a research cruise along the Norwegian coast up to Bear Island. Samples were analyzed with pyrolysis-gas chromatography-mass spectrometry, generating a mass-based data set for MP in the marine atmosphere. Here we show the ubiquity of MP, even in remote Arctic areas with concentrations up to 37.5 ng m−3. Cluster of polyethylene terephthalate (max. 1.5 ng m−3) were universally present. TWP (max. 35 ng m−3) and cluster of polystyrene, polypropylene, and polyurethane (max. 1.1 ng m−3) were also detected. Atmospheric transport and dispersion models, suggested the introduction of MP into the marine atmosphere equally from sea- and land-based emissions, transforming the ocean from a sink into a source for MP.

Springer Nature

2023

Monitoring persistent organic chemicals in Antarctica in support of global chemical policy: a horizon scan of priority actions and challenges

Bengtson Nash, Susan; Bohlin-Nizzetto, Pernilla; Galban-Malagon, Cristobal; Corsolini, Simonetta; Cincinelli, Alessandra; Lohmann, Rainer

Global production and emission of chemicals exceeds societal capacities for assessment and monitoring. This situation calls for improved chemical regulatory policy frameworks and increased support for expedited decision making within existing frameworks. The polar regions of the Earth represent unique sentinel areas for the study of global chemical behaviour, and data arising from these areas can strengthen existing policy frameworks. However, chemical pollution research and monitoring in the Antarctic is underdeveloped, with geopolitical complexities and the absence of legal recognition of international chemical policy serving to neutralise progress made in other global regions. This Personal View represents a horizon scan by the action group Input Pathways of Persistent Organic Pollutants to Antarctica, of the Scientific Committee for Antarctic Research. Four priority research and research facilitation gaps are outlined, with recommendations for Antarctica Treaty parties for strategic action against these priorities.

Elsevier

2023

Renere luft i Longyearbyen

Grythe, Henrik (intervjuobjekt); Krüger, Louise (journalist)

2023

Impacts of a warming climate on concentrations of organochlorines in a fasting high arctic marine bird: Direct vs. indirect effects?

Bustnes, Jan Ove; Bårdsen, Bård-Jørgen; Moe, Børge; Herzke, Dorte; Ballesteros, Manuel; Fenstad, Anette; Borgå, Katrine; Krogseth, Ingjerd Sunde; Eulaers, Igor; Skogeng, Lovise Pedersen; Gabrielsen, Geir Wing; Hanssen, Sveinn Are

The present study examined how climate changes may impact the concentrations of lipophilic organochlorines (OCs) in the blood of fasting High Arctic common eiders (Somateria mollissima) during incubation. Polychlorinated biphenyls (PCBs), 1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p′-DDE), hexachlorobenzene (HCB) and four chlordane compounds (oxychlordane, trans-chlordane and trans- and cis-nonachlor) were measured in females at chick hatching (n = 223) over 11 years (2007–2017). Firstly, median HCB and p,p′-DDE concentrations increased ~75 % over the study period, whereas median chlordane concentrations doubled (except for oxychlordane). PCB concentrations, in contrast, remained stable over the study period. Secondly, both body mass and clutch size were negatively associated with OC levels, suggesting that females with high lipid metabolism redistributed more OCs from adipose tissue, and that egg production is an important elimination route for OCs. Thirdly, the direct climate effects were assessed using the mean effective temperature (ET: air temperature and wind speed) during incubation, and we hypothesized that a low ET would increase redistribution of OCs. Contrary to expectation, the ET was positively correlated to most OCs, suggesting that a warmer climate may lead to higher OCs levels, and that the impact of ET may not be direct. Finally, potential indirect impacts were examined using the Arctic Oscillation (AO) in the three preceding winters (AOwinter 1–3) as a proxy for potential long-range transport of OCs, and for local spring climate conditions. In addition, we used chlorophyll a (Chla) as a measure of spring primary production. There were negative associations between AOwinter 1 and HCB, trans-chlordane and trans-nonachlor, whereas oxychlordane and cis-chlordane were negatively associated with Chla. This suggests that potential indirect climate effects on eiders were manifested through the food chain and not through increased long-range transport, although these relationships were relatively weak.

Elsevier

2023

Hierarchical Clustering and Dissimilarity Polygon Analyses. Optimizing the Polish Deposition Network.

Soares, Joana; Aas, Wenche; Eckhardt, Sabine; Guerreiro, Cristina

The potential re-design of the current deposition monitoring network in Poland was assessed by hierarchical clustering analysis. This statistical method determines the inherent or natural groupings of datasets, and/or to provide a summarization of data into groups using different metrics to assess the (di)similarity. The metrics are based on the correlation, to assess the temporal similarity, the Euclidean distance, to assess the magnitude similarity, and the combination of both. This method was used to assess the areas with similar deposition patters across the country based on measurement and model data for acidic compounds and heavy metals. The analysis clearly identified stations potentially redundant or measuring unique deposition patters and regions that represent the potential location of a single station.

NILU

2023

Sources and atmospheric dispersion of microplastics in the Norwegian territory

Gossmann, Isabel; Herzke, Dorte; Held, Andreas; Schulz, Janina; Nikiforov, Vladimir; Georgi, Christoph; Evangeliou, Nikolaos; Eckhardt, Sabine; Gerdts, Gunnar; Wurl, Oliver; Scholz-Böttcher, Barbara

2023

Fate of Anthropogenic Particles in Arctic Waters around Svalbard

Philipp, Carolin; Collard, France; Husum, Katrine; Herzke, Dorte; Halsband, Claudia; Gabrielsen, Geir Wing; Hallanger, Ingeborg G.

2023

Copernicus Atmosphere Monitoring Service. Interim Annual Assessment Report on European Air Quality in 2022

Hamer, Paul David; Fjæraa, Ann Mari; Tarrasón, Leonor; Soares, Joana; Meleux, Frédérik; Colette, Augustin; Ung, Anthony; Raux, Blandine; Kuenen, Jeroen

Copernicus Atmosphere Monitoring Service

2023

Ingestion of car tyre rubber by lumpfish increases exposure to toxins

Hägg, Fanny; Halsband, Claudia; Herzke, Dorte; Nikiforov, Vladimir; Booth, Andrew Michael; Bourgeon, Sophie

2023

Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling

Marécal, Virginie; Voisin-Plessis, Ronan; Roberts, Tarda Jane; Aiuppa, Alessandro; Narivelo, Herizo; Hamer, Paul David; Josse, Beatrice; Guth, Jonathan; Surl, Luke

HBr emissions from volcanoes lead rapidly to the formation of BrO within volcanic plumes and have an impact on tropospheric chemistry, at least at the local and regional scales. The motivation of this paper is to prepare a framework for further 3D modelling of volcanic halogen emissions in order to determine their fate within the volcanic plume and then in the atmosphere at the regional and global scales. The main aim is to evaluate the ability of the model to produce a realistic partitioning of bromine species within a grid box size typical of MOCAGE (Model Of atmospheric Chemistry At larGE scale) 3D (0.5∘ × 0.5∘). This work is based on a 1D single-column configuration of the global chemistry-transport model MOCAGE that has low enough computational cost to allow us to perform a large set of sensitivity simulations. This paper uses the emissions from the Mount Etna eruption on 10 May 2008. Several reactions are added to MOCAGE to represent the volcanic plume halogen chemistry. A simple plume parameterisation is also implemented and tested. The use of this parameterisation tends to only slightly limit the efficiency of BrO net production. Both simulations with and without the parameterisation give results for the partitioning of the bromine species, of ozone depletion and of the ratio that are consistent with previous studies.

A series of test experiments were performed to evaluate the sensitivity of the results to the composition of the emissions (primary sulfate aerosols, Br radical and NO) and to the effective radius assumed for the volcanic sulfate aerosols. Simulations show that the plume chemistry is sensitive to all these parameters. We also find that the maximum altitude of the eruption changes the BrO production, which is linked to the vertical variability of the concentrations of oxidants in the background air. These sensitivity tests display changes in the bromine chemistry cycles that are generally at least as important as the plume parameterisation. Overall, the version of the MOCAGE chemistry developed for this study is suitable to produce the expected halogen chemistry in volcanic plumes during daytime and night-time.

2023

Publikasjon
År
Kategori