Fant 9747 publikasjoner. Viser side 355 av 390:
2023
We conducted a theoretical analysis of the relationship between red-to-blue (RBR) color intensities and aerosol optical properties. RBR values are obtained by radiative transfer simulations of diffuse sky radiances. Changes in atmospheric aerosol concentration (parametrized by aerosol optical depth, AOD), particle’s size distribution (parametrized by Ångström exponent, AE) and aerosols’ scattering (parametrized by single scattering albedo—SSA) lead to variability in sky radiances and, thus, affect the RBR ratio. RBR is highly sensitive to AOD as high aerosol load in the atmosphere causes high RBR. AE seems to strongly affect the RBR, while SSA effect the RBR, but not to such a great extent.
2023
Monitoring of microplastics in the Norwegian environment (MIKRONOR)
Norsk institutt for vannforskning
2023
Målinger av SO2 i omgivelsene til Elkem Carbon og REC Solar. Januar 2022 – desember 2022.
På oppdrag fra Elkem Carbon AS har NILU utført målinger av SO2 i omgivelsene til Elkem Carbon og REC Solar i Vågsbygd (Kristiansand kommune). Elkem Carbon har i sin tillatelse fra Miljødirektoratet krav om å gjennomføre kontinuerlig måling av SO2 i omgivelsesluft. Målingene ble utført med SO2-monitor i boligområdet på Fiskåtangen (Konsul Wilds vei). I tillegg har Elkem Carbon AS valgt å måle med passive SO2-prøvetakere ved 3 steder rundt bedriftene. Rapporten dekker målinger i perioden 1. januar – 31. desember 2022. Norske grenseverdier for luftkvalitet (SO2) ble overholdt ved Konsul Wilds vei for alle midlingsperioder krevet i forurensningsforskriften (årsmiddel, vintermiddel, døgnmiddel og timemiddel). De mest belastede stedene i måleperioden var Konsul Wilds vei nordøst og Fiskåveien rett sør for bedriftene. To døgnmidler var over 125 µg/m3 (grenseverdi, 3 tillatt), 4 døgnmidler var over øvre vurderingsterskel (75 µg/m3) og 11 døgnmidler var over nedre vurderingsterskel (50 µg/m3).
NILU
2023
2023
2023
The tropospheric NO2 column from Sentinel-5P/TROPOMI (2018–2020) and Aura/OMI (2010–2020) over Poland, notably for 7 major Polish cities, was used to assess the annual variability and the COVID-19 lockdown effect. On a national scale, during lockdown (March–June 2020), strong sources of pollution were found in Katowice and Warszawa, as well as at the power plant in Bełchatów. A gradual drop in OMI NO2 values between March and June was found for all cities and the entire domain of Poland, this being a part of the annual NO2 cycle derived for every year from 2010 to 2020. In fact, the gradual drop of NO2 in the lockdown year was within the typical monthly and annual variability. In March 2020, Kraków showed the highest NO2 reduction rate. A reduction of NO2 was observed in Gdańsk, Wrocław, and Warszawa during every month of the lock-down period. Several factors, including wind speed and direction, temperature, and increased emission sources, can limit the dispersion and removal of NO2. Although meteorological conditions have a significant impact on the annual cycle of NO2 in Poland, it is important to note that anthropogenic emissions remain the primary driver of NO2 concentrations. Therefore, the study concludes that the effect of COVID-19 restrictions on NO2 pollution was negligible and clarifies the current understanding of the COVID-19 effect over Poland, with an emphasis on hotspots in the major Polish cities and their vicinity. This is consistent with our understanding that the reduction of NO2 pollution is seen in cities due to reduced traffic (domestic, municipal, and airborne).
Frontiers Media S.A.
2023
Persistent organic pollutants (POPs) are synthetic compounds that were intentionally produced in large quantities and have been distributed in the global environment, originating a threat due to their persistence, bioaccumulative potential, and toxicity. POPs reach the Antarctic continent through long-range atmospheric transport (LRAT). In these areas, low temperatures play a significant role in the environmental fate of POPs, retaining them for a long time due to cold trapping by diffusion and wet deposition, acting as a net sink for many POPs. However, in the current context of climate change, the remobilization of POPs that were trapped in water, ice, and soil for decades is happening. Therefore, continuous monitoring of POPs in polar air is necessary to assess whether there is a recent re-release of historical pollutants back to the environment. We reviewed the scientific literature on atmospheric levels of several POP families (polychlorinated biphenyls – PCBs, hexachlorobenzene – HCB, hexachlorocyclohexanes – HCHs, and dichlorodiphenyltrichloroethane – DDT) from 1980 to 2021. We estimated the atmospheric half-life using characteristic decreasing times (TD). We observed that HCB levels in the Antarctic atmosphere were higher than the other target organochlorine pesticides (OCPs), but HCB also displayed higher fluctuations and did not show a significant decrease over time. Conversely, the atmospheric levels of HCHs, some DDTs, and PCBs have decreased significantly. The estimated atmospheric half-lives for POPs decreased in the following order: 4,4' DDE (13.5 years) > 4,4' DDD (12.8 years) > 4,4' DDT (7.4 years) > 2,4' DDE (6.4 years) > 2,4' DDT (6.3 years) > α-HCH (6 years) > HCB (6 years) > γ-HCH (4.2 years). For PCB congeners, they decreased in the following order: PCB 153 (7.6 years) > PCB 138 (6.5 years) > PCB 101 (4.7 years) > PCB 180 (4.6 years) > PCB 28 (4 years) > PCB 52 (3.7 years) > PCB 118 (3.6 years). For HCH isomers and PCBs, the Stockholm Convention (SC) ban on POPs did have an impact on decreasing their levels during the last decades. Nevertheless, their ubiquity in the Antarctic atmosphere shows the problematic issues related to highly persistent synthetic chemicals.
2023
Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic
Primary biological aerosol particles (PBAP) play an important role in the climate system, facilitating the formation of ice within clouds, consequently PBAP may be important in understanding the rapidly changing Arctic. Within this work, we use single-particle fluorescence spectroscopy to identify and quantify PBAP at an Arctic mountain site, with transmission electronic microscopy analysis supporting the presence of PBAP. We find that PBAP concentrations range between 10−3–10−1 L−1 and peak in summer. Evidences suggest that the terrestrial Arctic biosphere is an important regional source of PBAP, given the high correlation to air temperature, surface albedo, surface vegetation and PBAP tracers. PBAP clearly correlate with high-temperature ice nucleating particles (INP) (>-15 °C), of which a high a fraction (>90%) are proteinaceous in summer, implying biological origin. These findings will contribute to an improved understanding of sources and characteristics of Arctic PBAP and their links to INP.
Springer Nature
2023
A rise in HFC-23 emissions from eastern Asia since 2015
Trifluoromethane (CHF3, HFC-23), one of the most potent greenhouse gases among hydrofluorocarbons (HFCs), is mainly emitted to the atmosphere as a by-product in the production of the ozone-depleting legacy refrigerant and chemical feedstock chlorodifluoromethane (CHClF2, HCFC-22). A recent study on atmospheric observation-based global HFC-23 emissions (top-down estimates) showed significant discrepancies over 2014–2017 between the increase in the observation-derived emissions and the 87 % emission reduction expected from capture and destruction processes of HFC-23 at HCFC-22 production facilities implemented by national phase-out plans (bottom-up emission estimates) (Stanley et al., 2020). However, the actual regions responsible for the increased emissions were not identified. Here, we estimate the regional top-down emissions of HFC-23 for eastern Asia based on in situ measurements at Gosan, South Korea, and show that the HFC-23 emissions from eastern China have increased from 5.0±0.4 Gg yr−1 in 2008 to 9.5±1.0 Gg yr−1 in 2019. The continuous rise since 2015 was contrary to the large emissions reduction reported under the Chinese hydrochlorofluorocarbons production phase-out management plan (HPPMP). The cumulative difference between top-down and bottom-up estimates for 2015–2019 in eastern China was Gg, which accounts for 47±11 % of the global mismatch. Our analysis based on HCFC-22 production information suggests the HFC-23 emissions rise in eastern China is more likely associated with known HCFC-22 production facilities rather than the existence of unreported, unknown HCFC-22 production, and thus observed discrepancies between top-down and bottom-up emissions could be attributed to unsuccessful factory-level HFC-23 abatement and inaccurate quantification of emission reductions.
2023
2023
2023
2023
2023
2023
Sheath formation time for spherical Langmuir probes
The formation time of the surrounding sheath of Langmuir probes in an ionospheric plasma has been studied to better understand the constraints this puts on the sampling frequency of a probe. A fully kinetic three-dimensional particle-in-cell model is used to simulate the temporal effects in the electron saturation region as the sheath forms. The stability of the probe current and the stability of the ion and electron density in the vicinity of the probe have been used to evaluate when the sheath was formed. Simulated results were compared with theoretical models and are in good agreement with the theoretical results. This shows that theoretical models can be used as guidance to estimate the formation time and to determine the sampling rate for a swept bias Langmuir system. Our results also show that the formation time is less affected by the plasma temperature and bias voltage as we move into the thick sheath regime, and will instead be determined by the plasma density. The presented results also show that applying a step function to the probe could be used to characterise ions species composition, or to estimate the ion density.
Cambridge University Press
2023
Mapping potential conflicts between global agriculture and terrestrial conservation
Demand for food products, often from international trade, has brought agricultural land use into direct competition with biodiversity. Where these potential conflicts occur and which consumers are responsible is poorly understood. By combining conservation priority (CP) maps with agricultural trade data, we estimate current potential conservation risk hotspots driven by 197 countries across 48 agricultural products. Globally, a third of agricultural production occurs in sites of high CP (CP > 0.75, max = 1.0). While cattle, maize, rice, and soybean pose the greatest threat to very high-CP sites, other low-conservation risk products (e.g., sugar beet, pearl millet, and sunflower) currently are less likely to be grown in sites of agriculture–conservation conflict. Our analysis suggests that a commodity can cause dissimilar conservation threats in different production regions. Accordingly, some of the conservation risks posed by different countries depend on their demand and sourcing patterns of agricultural commodities. Our spatial analyses identify potential hotspots of competition between agriculture and high-conservation value sites (i.e., 0.5° resolution, or ~367 to 3,077km2, grid cells containing both agriculture and high-biodiversity priority habitat), thereby providing additional information that could help prioritize conservation activities and safeguard biodiversity in individual countries and globally. A web-based GIS tool at https://agriculture.spatialfootprint.com/biodiversity/ systematically visualizes the results of our analyses.
2023
Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990–2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. ...
2023
2023
2023