Fant 9747 publikasjoner. Viser side 372 av 390:
Urbanization presents numerous societal challenges and exacerbates environmental issues. It is crucial to comprehend the current state and future direction of cities to formulate strategies and actions that mitigate negative consequences while ensuring a prosperous future for citizens. This study presents a universally applicable method for selecting indicators to gauge urban environmental sustainability. It aims to aid in structuring thinking for understanding and implementing Sustainable Development Goals (SDGs) within urban settings, using Norway as a case study but with a clear potential for broader applications. To achieve this, a comprehensive literature survey was conducted to gain insight into how urban environmental sustainability is conceptualized and operationalized in Norway. This involved assessing the key environmental challenges, as well as the strategies and action plans associated with them. Standardized sustainable cities' indicators served as references, which were then tailored to the municipal level to address the identified environmental challenges specific to Norwegian cities. Furthermore, the study discussed the proposed indicators for tracking the progress and state of these specific environmental challenges. In doing so, it establishes a foundation for comprehending environmental issues and establishing connections between indicators and environmental strategies and action plans in the urban sustainability context. Importantly, the methodologies and indicators we have unveiled in this study are designed to be applicable to cities beyond Norway, offering a scalable and adaptable approach for evaluating environmental challenges internationally. This work proposes a novel approach for evaluating the status and trends of environmental challenges by employing targeted indicators. These indicators can be expanded to include social and economic dimensions, enabling decision-makers and stakeholders to prioritize actions towards urban sustainability.
Elsevier
2024
Hybelkaniner kan være giftige: – Støvsug ofte, sier forsker
Norges forskningsråd
2024
Vitenskapskomiteen for mat og miljø (VKM) har oppdatert et metodedokument for helse og miljørisikovurderinger av plantevernmidler.
Målet med oppdateringen er å gjenspeile gjeldende regelverk og praksis, og sikre kvaliteten på fremtidige risikovurderinger utført av faggruppen for plantevernmidler i VKM. Det forrige metodedokumentet er fra 2012, og oppdateringen var nødvendig for å tilpasse metodene til nytt EU-regelverk for plantevernmidler, og for å innarbeide nye datakrav og retningslinjer for plantevernmidler og biocider. Ved å oppdatere metodedokumentet, ønsket faggruppen å sikre at risikovurderingene de leverer er i tråd med gjeldende regelverket og vitenskapelig kunnskap.
Viktige endringer
Dokumentet er oppdatert med henvisninger til nye forskrifter og veiledninger, om for eksempel biocider, nye typer plantevernmidler, og forenklet godkjenning/risikovurdering for mikrobielle stoffer. Det nye dokumentet inneholder også veiledning om fareidentifikasjon av stoffer med hormonforstyrrende egenskaper, alternative metoder for å redusere toksikologisk testing hos dyr, og vurdering av ikke-kostholdeksponering av plantevernmidler.
Dokumentet inneholder oppdatert informasjon om metodikk knyttet til vurdering av plantevernmidlers egenskaper og skjebne i miljøet, inkludert norske jord- og klimaforhold, renseanlegg og drikkevannsrenseprosesser. Veiledning om risikovurdering for bier og andre insekter, akvatiske organismer, fugler, pattedyr og andre vertebrater, samt meitemark og andre jordlevende organismer, er også oppdatert. Innen flere av feltene er eller vil det bli etablert spesifikke beskyttelsesmål og trinnvise risikovurderinger.
Samlet sett fungerer det oppdaterte metodedokumentet som en referanse for VKMs risikovurderingsarbeid for plantevernmidler, og sikrer at fremtidige vurderinger gjennomføres i samsvar med gjeldende regelverk og vitenskapelig kunnskap.
Metode
VKM har benyttet en semi-systematisk tilnærming, ved å utarbeide et arbeidsdokument for innhenting og sammenstilling av nødvendig informasjon om nye datakrav fra gjeldende regelverk for plantevernmidler og biocider i EU.
Dokumentet er godkjent av VKMs faggruppe for plantevernmidler.
2024
2024
2024
Monitoring aerosol optical depth during the Arctic night: Instrument development and first results
Moon-photometric measurements were made at two locations in the Arctic during winter nights using two different modified Sun photometers; a Carter Scott SP02 and a Precision Filter Radiometer (PFR) developed at PMOD/WRC. Values of aerosol optical depth (AOD) were derived from spectral irradiance measurements made at four wavelengths for each of the devices. The SP02 was located near Barrow, Alaska and recorded data from November 2012 to March 2013, spanning five lunar cycles, while the PFR was deployed to Ny-Ålesund, Svalbard each winter from February 2014 to February 2019 for a total of 56 measurement periods. A methodology was developed to process the raw data, involving calibration of the instruments and normalizing measured spectral irradiance values in accordance with site-specific determinations of the extraterrestrial atmospheric irradiance (ETI) as Moon phase cycled. Uncertainties of the derived AOD values were also evaluated and found to be in the range, 0.006–0.030, depending on wavelength and which device was evaluated.
The magnitudes of AOD determined for the two sites were in general agreement with those reported in the literature for sunlit periods just before and after the dark periods of Arctic night. Those for the PFR were also compared with data obtained using star photometers and a Cimel CE318-T, recently deployed to Ny-Ålesund, showing that Moon photometry is viable as a means to monitor AOD during the Arctic night. Such data are valuable for more complete assessments of the role aerosols play in modulating climate, the validation of AOD derived using various remote sensing techniques, and applications related to climate modeling.
Elsevier
2024
2024
2024
Assessing the environmental burden of disease related to air pollution in Europe in 2022
This report evaluates the health burden due to long-term exposure to PM2.5, NO2, and O3 across Europe in 2022. By analysing all-cause and cause-specific mortality and morbidity, it estimates disease burden using four indicators: Attributable Deaths (AD), Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life Years (DALY). However, the main results only consider the impact of exposure to levels of pollutants exceeding the current WHO air quality guidelines. The results indicate that PM2.5 contributes the most significant health impact (linked to six diseases), resulting in over 2.7 million DALY across 40 countries, and resulting in 269 000 AD, with mortality rates peaking in Eastern Europe. The report introduces methodological advancements, assessing the long-term impacts of O3 for the first time. Findings underscore the critical need for targeted air quality interventions, as pollution continues to drive significant health losses across the continent, particularly among vulnerable populations.
ETC/HE
2024
The report provides the annual update of the European air quality concentration maps and population and vegetation exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, peak season average of maximum daily 8-hour means, SOMO35, SOMO10), NO2 (annual average) and benzo(a)pyrene (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2022. The report contains also maps of Phytotoxic ozone dose (PODY) for selected crops (wheat, potato and tomato) and trees (spruce and beech) and NOx annual average map for the same year 2022. The ozone map of peak season average of maximum daily 8-hour means is presented for the first time. The trends in exposure estimates in the period 2005–2022 are summarized. The analysis for 2022 is based on the interpolation of the annual statistics of the 2022 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database, complemented, when needed, with measurements from additional sources. The mapping method is the Regression – Interpolation – Merging Mapping (RIMM). It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps. It also presents concentration change in 2022 in comparison to the five-year average 2017-2021 using the difference maps and exposure estimates.
ETC/HE
2024
2024
Spredningsberegninger Ferrozink Trondheim AS. Dokumentasjon i forbindelse med utslippstillatelse
NILU
2024
Trends in Air Pollution in Europe, 2000–2019
This paper encompasses an assessment of air pollution trends in rural environments in Europe over the 2000–2019 period, benefiting from extensive long-term observational data from the EMEP monitoring network and EMEP MSC-W model computations. The trends in pollutant concentrations align with the decreasing emission patterns observed throughout Europe. Annual average concentrations of sulfur dioxide, particulate sulfate, and sulfur wet deposition have shown consistent declines of 3-4% annually since 2000. Similarly, oxidized nitrogen species have markedly decreased across Europe, with an annual reduction of 1.5-2% in nitrogen dioxide concentrations, total nitrate in the air, and oxidized nitrogen deposition. Notably, emission reductions and model predictions appear to slightly surpass the observed declines in sulfur and oxidized nitrogen, indicating a potential overestimation of reported emission reductions. Ammonia emissions have decreased less compared to other pollutants since 2000. Significant reductions in particulate ammonium have however, been achieved due to the impact of reductions in SOx and NOx emissions. For ground level ozone, both the observed and modelled peak levels in summer show declining trends, although the observed decline is smaller than modelled. There have been substantial annual reductions of 1.8% and 2.4% in the concentrations of PM10 and PM2.5, respectively. Elemental carbon has seen a reduction of approximately 4.5% per year since 2000. A similar reduction for organic carbon is only seen in winter when primary anthropogenic sources dominate. The observed improvements in European air quality emphasize the importance of comprehensive legislations to mitigate emissions.
2024
Impact of Biomass Burning on Arctic Aerosol Composition
Emissions from biomass burning (BB) occurring at midlatitudes can reach the Arctic, where they influence the remote aerosol population. By using measurements of levoglucosan and black carbon, we identify seven BB events reaching Svalbard in 2020. We find that most of the BB events are significantly different to the rest of the year (nonevents) for most of the chemical and physical properties. Aerosol mass and number concentrations are enhanced by up to 1 order of magnitude during the BB events. During BB events, the submicrometer aerosol bulk composition changes from an organic- and sulfate-dominated regime to a clearly organic-dominated regime. This results in a significantly lower hygroscopicity parameter κ for BB aerosol (0.4 ± 0.2) compared to nonevents (0.5 ± 0.2), calculated from the nonrefractory aerosol composition. The organic fraction in the BB aerosol showed no significant difference for the O:C ratios (0.9 ± 0.3) compared to the year (0.9 ± 0.6). Accumulation mode particles were present during all BB events, while in the summer an additional Aitken mode was observed, indicating a mixture of the advected air mass with locally produced particles. BB tracers (vanillic, homovanillic, and hydroxybenzoic acid, nitrophenol, methylnitrophenol, and nitrocatechol) were significantly higher when air mass back trajectories passed over active fire regions in Eastern Europe, indicating agricultural and wildfires as sources. Our results suggest that the impact of BB on the Arctic aerosol depends on the season in which they occur, and agricultural and wildfires from Eastern Europe have the potential to disturb the background conditions the most.
American Chemical Society (ACS)
2024
The ubiquitous and global ecological footprint arising from the rapidly increasing rates of plastic production, use, and release into the environment is an important modern environmental issue. Of increasing concern are the risks associated with at least 16,000 chemicals present in plastics, some of which are known to be toxic, and which may leach out both during use and once exposed to environmental conditions, leading to environmental and human exposure. In response, the United Nations member states agreed to establish an international legally binding instrument on plastic pollution, the global plastics treaty. The resolution acknowledges that the treaty should prevent plastic pollution and its related impacts, that effective prevention requires consideration of the transboundary nature of plastic production, use and pollution, and that the full life cycle of plastics must be addressed. As a group of scientific experts and members of the Scientists' Coalition for an Effective Plastics Treaty, we concur that there are six essential “pillars” necessary to truly reduce plastic pollution and allow for chemical detoxification across the full life cycle of plastics. These include a plastic chemical reduction and simplification, safe and sustainable design of plastic chemicals, incentives for change, holistic approaches for alternatives, just transition and equitable interventions, and centering human rights. There is a critical need for scientifically informed and globally harmonized information, transparency, and traceability criteria to protect the environment and public health. The right to a clean, healthy, and sustainable environment must be upheld, and thus it is crucial that scientists, industry, and policy makers work in concert to create a future free from hazardous plastic contamination.
Elsevier
2024
2024
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014–2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Elsevier
2024