Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9878 publikasjoner. Viser side 374 av 396:

Publikasjon  
År  
Kategori

Skadelige mengder bisfenoler lekker ut av forpakning til næringsmidler

Skaar, Jøran Solnes; Lysberg, Ingeborg Antonsen

2024

Comparison of Atmospheric Microplastic in remote and urban locations in Norway; occurence, composition and sources

Herzke, Dorte; Schmidt, Natascha; Schulze, Dorothea; Eckhardt, Sabine; Evangeliou, Nikolaos

2024

New online services such as the “Homeless Data Portal” and “FLEXPART trajectories and footprints” provided through ATMO-ACCESS

Murberg, Lise Eder; Myhre, Cathrine Lund; Eckhardt, Sabine; Evangeliou, Nikolaos; Rud, Richard Olav

2024

Vinterlufta

Grythe, Henrik (intervjuobjekt); Leine, Jan Erlend (journalist)

2024

Energetic particle precipitation influences global secondary ozone distribution

Jia, Jia; Murberg, Lise Eder; Løvset, Tiril; Orsolini, Yvan; Espy, Patrick Joseph; Zeller, Lilou C. G.; Salinas, Cornelius Csar Jude H.; Lee, Jae N.; Wu, Dong; Zhang, Jiarong

The secondary ozone layer is a global peak in ozone abundance in the upper mesosphere-lower thermosphere (UMLT) around 90-95 km. The effect of energetic particle precipitation (EPP) from geomagnetic processes on this UMLT ozone remains largely unexplored. In this research we investigated how the secondary ozone responds to EPP using satellite observations. In addition, the residual Mean Meridional Circulation (MMC) derived from model simulations and the atomic oxygen [O], atomic hydrogen [H], temperature measurements from satellite observations were used to characterise the residual circulation changes during EPP events. We report regions of secondary ozone enhancement or deficit across low, mid and high latitudes as a result of global circulation and transport changes induced by EPP. The results are supported by a sensitivity test using an empirical model.

Springer Nature

2024

Monitoring of long-range transported air pollutants in Norway. Annual report 2023.

Aas, Wenche; Eckhardt, Sabine; Evangeliou, Nikolaos; Hjellbrekke, Anne-Gunn; Platt, Stephen Matthew; Solberg, Sverre; Yttri, Karl Espen

This report presents results from the monitoring of atmospheric composition and deposition of air pollution in 2023, and focuses on main components in air and precipitation, particulate and gaseous phase of inorganic constituents, particulate carbonaceous matter, ground level ozone and particulate matter. The level of pollution in 2023 was generally low though a few episodes occurred. There was an increase in the PM levels in southern Norway during June, caused by a mixture of sources, including emissions from wildfires in Canada

NILU

2024

Carbon and Greenhouse Gas Budgets of Europe: Trends, Interannual and Spatial Variability, and Their Drivers

Lauerwald, Ronny; Bastos, Ana; McGrath, Matthew J.; Petrescu, Ana Maria Roxana; Ritter, François; Andrew, Robbie; Berchet, Antoine; Broquet, Grégoire; Brunner, Dominik; Chevallier, Frédéric; Cescatti, Alessandro; Filipek, Sara; Fortems-Cheiney, Audrey; Forzieri, Giovanni; Friedlingstein, Pierre; Fuchs, Richard; Gerbig, Christoph; Houweling, Sanne; Ke, Piyu; Lerink, Bas J. W.; Li, Wanjing; Li, Wei; Li, Xiaojun; Luijkx, Ingrid; Monteil, Guillaume; Munassar, Saqr; Nabuurs, Gert-Jan; Patra, Prabir K.; Peylin, Philippe; Pongratz, Julia; Regnier, Pierre; Saunois, Marielle; Schelhaas, Mart-Jan; Scholze, Marko; Sitch, Stephen; Thompson, Rona Louise; Tian, Hanqin; Tsuruta, Aki; Wilson, Chris; Wigneron, Jean-Pierre; Yao, Yitong; Zaehle, Sönke; Ciais, Philippe

In the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom-up (BU) estimate of GHG net-emissions of 3.9 Pg CO2-eq. yr−1 (using a global warming potential on a 100 years horizon), which are largely dominated by fossil fuel emissions. In this decade, terrestrial ecosystems acted as a net GHG sink of 0.9 Pg CO2-eq. yr−1, dominated by a CO2 sink that was partially counterbalanced by net emissions of CH4 and N2O. For CH4 and N2O, we find good agreement between BU and top-down (TD) estimates from atmospheric inversions. However, our BU land CO2 sink is significantly higher than the TD estimates. We further show that decadal averages of GHG net-emissions have declined by 1.2 Pg CO2-eq. yr−1 since the 1990s, mainly due to a reduction in fossil fuel emissions. In addition, based on both data driven BU and TD estimates, we also find that the land CO2 sink has weakened over the past two decades. A large part of the European CO2 and C sinks is located in Northern Europe. At the same time, we find a decreasing trend in sink strength in Scandinavia, which can be attributed to an increase in forest management intensity. These are partly offset by increasing CO2 sinks in parts of Eastern Europe and Northern Spain, attributed in part to land use change. Extensive regions of high CH4 and N2O emissions are mainly attributed to agricultural activities and are found in Belgium, the Netherlands and the southern UK. We further analyzed interannual variability in the GHG budgets. The drought year of 2003 shows the highest net-emissions of CO2 and of all GHGs combined.

American Geophysical Union (AGU)

2024

Heavy metals and POP measurements 2022

Aas, Wenche; Halvorsen, Helene Lunder; Pfaffhuber, Katrine Aspmo

This report presents an overview of the annual statistics and results from the monitoring programme of heavy metals and persistent organic pollutants (POPs) in EMEP in 2022.

NILU

2024

Hvor kommer miljøgifter i Arktis fra? Møt NEM-modellen

Solbakken, Christine Forsetlund

Norges forskningsråd

2024

NEM – et verktøy for å granske endringsdrivere for miljøgifter i Arktis

Krogseth, Ingjerd Sunde; Breivik, Knut; Eckhardt, Sabine; Pedersen, Lovise Skogeng

2024

Recent European F-gas Emissions from Multiple Inverse Modelling Systems

De Longueville, Helene; Melo, Daniela Brito; Ramsden, Alice; Redington, Alison; Danjou, Alexandre; Andrews, Peter; Pitt, Joseph R.; Murphy, Brendan; Saboya, Eric; Stanley, Kieran M.; O'Doherty, Simon; Wenger, Angelina; Young, Dickon; Engel, Andreas; Vollmer, Martin K.; Reimann, Stefan; Maione, Michela; Arduini, Jgor; Lunder, Chris Rene; Wagenhaeuser, Thomas; Schmidbauer, Norbert; Frumau, Arnoud; Haszpra, László; Molnar, Mihaly; Tunnicliffe, Rachel; Western, Luke M.; Rigby, Matthew; Henne, Stephan; Manning, Alistair J.; Ganesan, Anita L.

2024

National monitoring of aerosols in Norway

Platt, Stephen Matthew; Aas, Wenche; Lunder, Chris Rene

2024

The FAIRness of ACTRIS Data Centre

Myhre, Cathrine Lund; Fiebig, Markus; Rud, Richard Olav; Mona, Lucia; Dema, Claudio; Pascal, Nicolas; Henry, Patrice; Picquet-Varrault, Bénédicte; Brissebrat, Guillaume; Boonne, Cathy; O'Connor, Ewan; Tukiainen, Simo

The purpose of this report is to document the status and implementation of FAIRness within ACTRIS Data centre as of March 2023, developed over the period January 2019 – March 2023.

The report is an extended version of ENVRI-FAIR deliverable D8.4 due March 2023 and available through Zenodo: ENVRI-FAIR D8.4: The FAIRness of ACTRIS | Zenodo, only including the work until autumn 2022. This present report adds more information to the implementation of the FAIR principles by ACTRIS Data Centre over the period January 2019 – March 2023. In addition to D8.4, the present report provides a comprehensive external FAIRness assessment covering the entire period 2019 - 2023, along with an evaluation of the implementation in the years 2022 and the first half of 2023. It's important to note that the project deliverable only encompasses the period from 2019 to 2021.

NILU

2024

Aircraft-based mass balance estimate of methane emissions from offshore gas facilities in the southern North Sea

Pühl, Magdalena; Roiger, Anke; Fiehn, Alina; Gorchov Negron, Alan M.; Kort, Eric A.; Schwietzke, Stefan; Pisso, Ignacio; Foulds, Amy; Lee, James; France, James L.; Jones, Anna E.; Lowry, Dave; Fisher, Rebecca E.; Huang, Langwen; Shaw, Jacob; Bateson, Prudence; Andrews, Stephen; Young, Stuart; Dominutti, Pamela; Lachlan-Cope, Tom; Weiss, Alexandra; Allen, Grant

Atmospheric methane (CH4) concentrations have more than doubled since the beginning of the industrial age, making CH4 the second most important anthropogenic greenhouse gas after carbon dioxide (CO2). The oil and gas sector represents one of the major anthropogenic CH4 emitters as it is estimated to account for 22 % of global anthropogenic CH4 emissions. An airborne field campaign was conducted in April–May 2019 to study CH4 emissions from offshore gas facilities in the southern North Sea with the aim of deriving emission estimates using a top-down (measurement-led) approach. We present CH4 fluxes for six UK and five Dutch offshore platforms or platform complexes using the well-established mass balance flux method. We identify specific gas production emissions and emission processes (venting and fugitive or flaring and combustion) using observations of co-emitted ethane (C2H6) and CO2. We compare our top-down estimated fluxes with a ship-based top-down study in the Dutch sector and with bottom-up estimates from a globally gridded annual inventory, UK national annual point-source inventories, and operator-based reporting for individual Dutch facilities. In this study, we find that all the inventories, except for the operator-based facility-level reporting, underestimate measured emissions, with the largest discrepancy observed with the globally gridded inventory. Individual facility reporting, as available for Dutch sites for the specific survey date, shows better agreement with our measurement-based estimates. For all the sampled Dutch installations together, we find that our estimated flux of (122.9 ± 36.8) kg h−1 deviates by a factor of 0.64 (0.33–12) from reported values (192.8 kg h−1). Comparisons with aircraft observations in two other offshore regions (the Norwegian Sea and the Gulf of Mexico) show that measured, absolute facility-level emission rates agree with the general distribution found in other offshore basins despite different production types (oil, gas) and gas production rates, which vary by 2 orders of magnitude. Therefore, mitigation is warranted equally across geographies.

2024

Extracellular Vesicles as Next-Generation Diagnostics and Advanced Therapy Medicinal Products

Stawarska, Agnieszka; Bamburowicz-Klimkows, Magdalena; Rundén-Pran, Elise; Dusinska, Maria; Cimpan, Mihaela Roxana; Rios Mondragon, Ivan; Grudzinski, Ireneusz P.

Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.

MDPI

2024

Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science

Petzold, Andreas; Bundke, Ulrich; Hienola, Anca; Laj, Paolo; Myhre, Cathrine Lund; Vermeulen, Alex; Adamaki, Angeliki; Kutsch, Werner; Thouret, Valerie; Boulanger, Damien; Fiebig, Markus; Stocker, Markus; Zhao, Zhiming; Asmi, Ari

The acquisition and dissemination of essential information for understanding global biogeochemical interactions between the atmosphere and ecosystems and how climate–ecosystem feedback loops may change atmospheric composition in the future comprise a fundamental prerequisite for societal resilience in the face of climate change. In particular, the detection of trends and seasonality in the abundance of greenhouse gases and short-lived climate-active atmospheric constituents is an important aspect of climate science. Therefore, easy and fast access to reliable, long-term, and high-quality observational environmental data is recognised as fundamental to research and the development of environmental forecasting and assessment services. In our opinion article, we discuss the potential role that environmental research infrastructures in Europe (ENVRI RIs) can play in the context of an integrated global observation system. In particular, we focus on the role of the atmosphere-centred research infrastructures ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure), IAGOS (In-service Aircraft for a Global Observing System), and ICOS (Integrated Carbon Observation System), also referred to as ATMO-RIs, with their capabilities for standardised collection and provision of long-term and high-quality observational data, complemented by rich metadata. The ATMO-RIs provide data through open access and offer data interoperability across different research fields including all fields of environmental sciences and beyond. As a result of these capabilities in data collection and provision, we elaborate on the novel research opportunities in atmospheric sciences which arise from the combination of open-access and interoperable observational data, tools, and technologies offered by data-intensive science and the emerging collaboration platform ENVRI-Hub, hosted by the European Open Science Cloud (EOSC).

2024

CitySatAir – Monitoring urban NO2 with TROPOMI data

Mijling, Bas; Schneider, Philipp; Hamer, Paul David; Moreno, Paul; Jimenez, Isadora

2024

Status report of air quality in Europe for year 2022, using validated data

Targa, Jaume; Colina, María; Banyuls, Lorena; Ortiz, Alberto González; Soares, Joana

ETC/HE

2024

Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attention

Lepioufle, Jean-Marie; Schneider, Philipp; Hamer, Paul David; Ødegård, Rune Åvar; Vallejo, Islen; Cao, Tuan-Vu; Taherkordi, Amirhosein; Wojcikowski, Marek

In environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori quality information about the sensor device without using complex and resource-demanding data assimilation techniques. Both ordinary kriging and the general regression neural network (GRNN) are integrated into this attention with their learnable parameters based on deep learning architectures. We evaluate this method using three static phenomena with different complexities: a case related to a simplistic phenomenon, topography over an area of 196 and to the annual hourly concentration in 2019 over the Oslo metropolitan region (1026 ). We simulate networks of 100 synthetic sensor devices with six characteristics related to measurement quality and measurement spatial resolution. Generally, outcomes are promising: we significantly improve the metrics from baseline geostatistical models. Besides, distance attention using the Nadaraya–Watson kernel provides as good metrics as the attention based on the kriging system enabling the possibility to alleviate the processing cost for fusion of sparse data. The encouraging results motivate us in keeping adapting distance attention to space-time phenomena evolving in complex and isolated areas.

Cambridge University Press

2024

Interim air quality maps of EEA member and cooperating countries for 2023. PM, O3, and NO2 spatial estimates

Horálek, Jan; Vlasakova, Leona; Schreiberova, Marketa; Schneider, Philipp; Benesova, Nina; Vlcek, Ondrej

The report presents interim 2023 maps for PM10 annual average, PM2.5 annual average, O3 indicator peak season average of maximum daily 8-hour means, and NO2 annual average. The maps have been produced based on the 2023 non-validated E2a (UTD) data of the AQ e-reporting database, the CAMS Ensemble Forecast modelling data and other supplementary data. Together with the concentration maps, the inter-annual differences between 5-year average 2018-2022 and 2023 are presented (using the 2018-2022 regular and the 2023 interim maps), as well as basic exposure estimates based on the interim maps.

ETC/HE

2024

Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components

Fagerli, Hilde; Benedictow, Anna Maria Katarina; Blake, Lewis R.; van Caspel, Willem Elias; Denby, Bruce; Gauss, Michael; Jonson, Jan Eiof; Klein, Heiko; Lange, Gunnar Felix; Mousing, Erik Askov; Nyiri, Agnes; Oliviè, Dirk Jan Leo; Segers, Arjo; Simpson, David; Tsyro, Svetlana; Valdebenito Bustamante, Alvaro Moises; Wind, Peter Ariaan; Aas, Wenche; Fiebig, Markus; Hjellbrekke, Anne-Gunn; Solberg, Sverre; Tørseth, Kjetil; Yttri, Karl Espen; Redeyoff, Oscar; Matthews, Bradley; Schindlbacher, Sabine; Ullrich, Bernhard; Wankmüller, Robert; Scheuschner, Thomas; Kuenen, Jeroen J.P.; Guevara, Marc; Jaffrezo, Jean-Luc; Dominutti, Pamela; Uzu, Gaelle; Conil, Sébastien; Favez, Olivier; Močnik, Griša

Norwegian Meteorological Institute

2024

Publikasjon
År
Kategori