Fant 9747 publikasjoner. Viser side 376 av 390:
2009
2009
2008
2012
Munksgaard Forlag
2020
2011
2023
Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes.
Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50 % decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2∕3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1.
Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AODf, AODc), Ångström exponent (AE), dry surface scattering (SCdry), and absorption (ACdry) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21 % ± 20 % (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from −37 % (MODIS-Terra) to −16 % (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R>0.75), suggesting that the models are capable of capturing spatio-temporal variations in AOD. We find a much larger underestimate in coarse AODc (∼ −45 % ± 25 %) than in fine AODf (∼ −15 % ± 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AODc bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AODc.
Column AEs are underestimated by about 10 % ± 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140 % if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment.
Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of −35 % ± 25 % and −20 % ± 18 % for SCdry and ACdry, respectively. The larger underestimate of SCdry than ACdry suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models.
Considerable ...
2021
2023
2024
2011
2000
2024
Advanced in vitro models are needed to support next-generation risk assessment (NGRA), moving from hazard assessment based mainly on animal studies to the application of new alternative methods (NAMs). Advanced models must be tested for hazard assessment of nanomaterials (NMs). The aim of this study was to perform an interlaboratory trial across two laboratories to test the robustness of and optimize a 3D lung model of human epithelial A549 cells cultivated at the air–liquid interface (ALI). Potential change in sensitivity in hazard identification when adding complexity, going from monocultures to co- and tricultures, was tested by including human endothelial cells EA.hy926 and differentiated monocytes dTHP-1. All models were exposed to NM-300K in an aerosol exposure system (VITROCELL® cloud-chamber). Cyto- and genotoxicity were measured by AlamarBlue and comet assay. Cellular uptake was investigated with transmission electron microscopy. The models were characterized by confocal microscopy and barrier function tested. We demonstrated that this advanced lung model is applicable for hazard assessment of NMs. The results point to a change in sensitivity of the model by adding complexity and to the importance of detailed protocols for robustness and reproducibility of advanced in vitro models
MDPI
2022
2023
The apportionment of equivalent black carbon (eBC) to combustion sources from liquid fuels (mainly fossil; eBCLF) and solid fuels (mainly non-fossil; eBCSF) is commonly performed using data from Aethalometer instruments (AE approach). This study evaluates the feasibility of using AE data to determine the absorption Ångström exponents (AAEs) for liquid fuels (AAELF) and solid fuels (AAESF), which are fundamental parameters in the AE approach. AAEs were derived from Aethalometer data as the fit in a logarithmic space of the six absorption coefficients (470–950 nm) versus the corresponding wavelengths. The findings indicate that AAELF can be robustly determined as the 1st percentile (PC1) of AAE values from fits with R2 > 0.99. This R2-filtering was necessary to remove extremely low and noisy-driven AAE values commonly observed under clean atmospheric conditions (i.e., low absorption coefficients). Conversely, AAESF can be obtained from the 99th percentile (PC99) of unfiltered AAE values. To optimize the signal from solid fuel sources, winter data should be used to calculate PC99, whereas summer data should be employed for calculating PC1 to maximize the signal from liquid fuel sources. The derived PC1 (AAELF) and PC99 (AAESF) values ranged from 0.79 to 1.08, and 1.45 to 1.84, respectively. The AAESF values were further compared with those constrained using the signal at mass-to-charge 60 (m/z 60), a tracer for fresh biomass combustion, measured using aerosol chemical speciation monitor (ACSM) and aerosol mass spectrometry (AMS) instruments deployed at 16 sites. Overall, the AAESF values obtained from the two methods showed strong agreement, with a coefficient of determination (R2) of 0.78. However, uncertainties in both approaches may vary due to site-specific sources, and in certain environments, such as traffic-dominated sites, neither approach may be fully applicable.
Elsevier
2025
Addressing pan-Arctic black carbon through the collective measurements of the IASOA observatories. NILU F
2013
Addressing emissions of particulate matter from wood burning during Göte-2005 using levoglucosan. NILU F
2005