Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9758 publikasjoner. Viser side 56 av 391:

Publikasjon  
År  
Kategori

Bioaccumulation of brominated flame retardants. The Handbook of Environmental Chemistry, vol. 16

Dominguez, A.A.; Law, R.J.; Herzke, D.; de Boer, J.

2011

Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress.

Kamran, M.A.; Eqani, S.A.M.A.S.; Bibi, S.; Xu, R.-k.; Amna, Monis, M.F.H.; Katsoyiannis, A.; Bokhari, H.; Chaudhary, H.J.

2016

Bioaccumulation of Per and Polyfluoroalkyl Substances in Antarctic Breeding South Polar Skuas (Catharacta maccormicki) and Their Prey

Alfaro Garcia, Laura Andrea; Descamps, Sebastien; Herzke, Dorte; Chastel, Olivier; Carravieri, Alice; Cherel, Yves; Labadie, Pierre; Budzinski, Helene; Munoz, Gabriel; Bustamante, Paco; Polder, Anuschka; Gabrielsen, Geir Wing; Bustnes, Jan Ove; Borgå, Katrine

Per and polyfluoroalkyl substances (PFASs) are found in Antarctic wildlife, with high levels in the avian top predator south polar skua (Catharacta maccormicki). As increasing PFAS concentrations were found in the south polar skua during the breeding season in Antarctica, we hypothesised that available prey during the breeding period contributes significantly to the PFAS contamination in skuas. To test this, we compared PFAS in south polar skuas and their main prey from two breeding sites on opposite sides of the Antarctic continent: Antarctic petrel (Thalassoica antarctica) stomach content, eggs, chicks, and adults from Svarthamaren in Dronning Maud Land and Adélie penguin chicks (Pygoscelis adeliae) from Dumont d’Urville in Adélie Land. Of the 22 PFAS analysed, seven were present in the majority of samples, except petrel stomach content [only perfluoroundecanoate (PFUnA) present] and Adélie penguins (only four compounds present), with increasing concentrations from the prey to the skuas. The biomagnification factors (BMFs) were higher at Dumont d’Urville than Svarthamaren. When adjusted to reflect one trophic level difference, the BMFs at Svarthamaren remained the same, whereas the ones at Dumont d’Urville doubled. At both the colonies, the skua PFAS pattern was dominated by perfluorooctanesulfonic acid (PFOS), followed by PFUnA, but differed with the presence of branched PFOS and perfluorotetradecanoate (PFTeA) and lack of perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) at Dumont d’Urville. At Svarthamaren, the pattern in the prey was comparable to the skuas, but with a higher relative contribution of PFTeA in prey. At Dumont d’Urville, the pattern in the prey differed from the skuas, with the domination of PFUnA and the general lack of PFOS in prey. Even though the PFAS levels are low in Antarctic year-round resident prey, the three lines of evidence (pattern, BMF difference, and BMF adjusted to one trophic level) suggest that the Antarctic petrel are the significant source of PFAS in the Svarthamaren skuas, whereas the skuas in Dumont d’Urville have other important sources to PFAS than Adélie penguin, either in the continent or external on the inter-breeding foraging grounds far from Antarctica.

Frontiers Media S.A.

2022

Bioaccumulation of synthetic musks in different aquatic species. Poster presentation. NILU F

Gatermann, R.; Rimkus, G.; Hecker, M.; Biselli, S.; Hühnerfuss, H.

1999

Bioakkumulering, økotoksikologi og biomarkørresponser i marine næringskjeder. NILU F

Nygård, T.; Berge, J.A.; Berger, U.; Brevik, E.; Herzke, D.; Melbøe, A.; Jenssen, B.M.; Kallenborn, R.; Røv, N.; Schlabach, M.; Vetter, W.; Aarnes, J.B.

2005

Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales.

Schröder, W.; Nickel, S.; Schönrock, S.; Schmalfuß, R.; Wosniok, W.; Meyer, M.; Harmens, H.; Frontasyeva, M. V.; Alber, R.; Aleksiayenak, J.; Barandovski, L.; Blum, O.; Carballeira, A.; Dam, M.; Danielsson, H.; De Temmermann, L.; Dunaev, A. M.; Godzik, B.; Hoydal, K.; Jeran, Z.; Karlsson, G. P.; Lazo, P.; Leblond, S.; Lindroos, J.; Liiv, S.; Magnússon, S. H.; Mankovska, B.; Núñez-Olivera, E.; Piispanen, J.; Poikolainen, J.; Popescu, I. V.; Qarri, F.; Santamaria, J. M.; Skudnik, M.; Špiric, Z.; Stafilov, T.; Steinnes, E.; Stihi, C.; Suchara, I.; Thöni, L.; Uggerud, H. T.; Zechmeister, H. G.

2017

Biological activity of plant extract isolated from Papaver rhoeas on human lymfoblastoid cell line.

Hasplova, K.; Hudecova, A.; Miadokova, E.; Magdolenova, Z.; Galova, E.; Vaculcikova, L.; Gregan, F.; Dusinska, M.

2011

Biological impact assessment of nanomaterial used in nanomedicine. Introduction to the NanoTEST project.

Juillerat, L.; Fjellsbø, L.M.; Dusinska, M.; Collins, A.R.; Handy, R.; Riediker, M.; the NanoTEST Consortium.

2015

Biological Uptake of Organic Contaminants from Car Tire Particles

Halsband, Claudia; Hägg, Fanny; Galtung, Kristin; Herzke, Dorte; Booth, Andrew Michael; Nikiforov, Vladimir

2023

Biomagnification of PFAS in the Antarctic breeding south polar skua

Garcia, Laura Andrea Alfaro; Descamps, Sebastien; Herzke, Dorte; Eckbo, Norith; Chastel, O.; Carravieri, Alice; Cherel, Yves; Labadie, P.; Budzinski, H.; Gabrielsen, Geir W.; Bustnes, Jan Ove; Borgå, Katrine

2019

Biomass burning and anthropogenic sources of CO over New England in the summer 2004.

Warneke, C.; de Gouw, J.A.; Stohl, A.; Cooper, O.R.; Goldan, P.D.; Kuster, W.C.; Holloway, J.S.; Williams, E.J.; Lerner, B.M.; McKeen, S.A.; Trainer, M.; Fehsenfeld, F.C.; Atlas, E.L.; Donnelly, S.G.; Stroud, V.; Lueb, A.; Kato, S.

2006

Biomass burning and anthropogenic sources of CO over New England in the summer of 2004.

Warneke, C.; de Gouw, J.A.; Stohl, A.; Cooper, O.R.; Golden, P.D.; Kuster, W.; Kato, S.; Holloway, J.S.; Williams, E.J.; Lerner, B.; McKeen, S.A.; Trainer, M.; Fehsenfeld, F.C.; Atlas, E.L.; Donelly, S.G.

2005

Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: Implications for model constraints and emission inventories

Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Bauer, Susanne; Bergman, Tommi; Bian, Huisheng; Curci, Gabriele; Johnson, Ben; Kaiser, Johannes; Kipling, Zak; Kokkola, Harri; Liu, Xiaohong; Mezuman, Keren; Mielonen, Tero; Myhre, Gunnar; Pan, Xiaohua; Protonotariou, Anna; Remy, Samuel; Skeie, Ragnhild Bieltvedt; Stier, Philip; Toshihiko, Takemura; Tsigaridis, Kostas; Wang, Hailong; Watson-Parris, Duncan; Zhang, Kai

We assessed the biomass burning (BB) smoke aerosol optical depth (AOD) simulations of 11 global models that participated in the AeroCom phase III BB emission experiment. By comparing multi-model simulations and satellite observations in the vicinity of fires over 13 regions globally, we (1) assess model-simulated BB AOD performance as an indication of smoke source–strength, (2) identify regions where the common emission dataset used by the models might underestimate or overestimate smoke sources, and (3) assess model diversity and identify underlying causes as much as possible. Using satellite-derived AOD snapshots to constrain source strength works best where BB smoke from active sources dominates background non-BB aerosol, such as in boreal forest regions and over South America and southern hemispheric Africa. The comparison is inconclusive where the total AOD is low, as in many agricultural burning areas, and where the background is high, such as parts of India and China. Many inter-model BB AOD differences can be traced to differences in values for the mass ratio of organic aerosol to organic carbon, the BB aerosol mass extinction efficiency, and the aerosol loss rate from each model. The results point to a need for increased numbers of available BB cases for study in some regions and especially to a need for more extensive regional-to-global-scale measurements of aerosol loss rates and of detailed particle microphysical and optical properties; this would both better constrain models and help distinguish BB from other aerosol types in satellite retrievals. More generally, there is the need for additional efforts at constraining aerosol source strength and other model attributes with multi-platform observations.

2025

Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia.

Karlsson, P.E.; Ferm, M.; Tømmervik, H.; Hole, L.R.; Karlsson, G.P.; Ruoho-Airola, T.; Aas, W.; Hellsten, S.; Akselsson, C.; Mikkelsen, T.N.; Nihlgård, B.

2013

Publikasjon
År
Kategori