Fant 9887 publikasjoner. Viser side 57 av 396:
2010
2009
IEEE (Institute of Electrical and Electronics Engineers)
2025
With the current possible presence of thousands of PFAS compounds in industrial emissions, there is an increasing need to assess the impacts of PFAS regulation of conventional PFAS on one hand and the exposure to emerging and yet unknown PFAS on the other. Today’s analytical methodologies using targeted approaches are not sufficient to determine the complete suite of PFAS present. To evaluate the presence of unknown PFAS, we investigated in this study the occurrence of an extended range of target PFAS in various species from the marine and terrestrial Norwegian environment, in relation to the extractable organic fluorine (EOF), which yields the total amount of organic fluorine. The results showed a varying presence of extractable fluorinated organics, with glaucous gull eggs, otter liver and polar bear plasma showing the highest EOF and a high abundance of PFAS as well. The targeted PFAS measurements explained 1% of the organic fluorine for moose liver as the lowest and 94% for otter liver as the highest. PFCAs like trifluoro acetic acid (TFA, reported semi-quantitatively), played a major role in explaining the organic fluorine present. Emerging PFAS as the perfluoroethylcyclohexane sulfonate (PFECHS), was found in polar bear plasma in quantifiable amounts for the first time, confirming earlier detection in arctic species far removed from emission sources. To enable a complete organic fluorine mass balance in wildlife, new approaches are needed, to uncover the presence of new emerging PFAS as cyclic- or ether PFAS together with chlorinated PFAS as well as fluorinated organic pesticides and pharmaceuticals.
Elsevier
2022
2008
2016
2013
2005
Tackling Data Quality When Using Low-Cost Air Quality Sensors in Citizen Science Projects
Using low-cost air quality sensors (LCS) in citizen science projects opens many possibilities. LCS can provide an opportunity for the citizens to collect and contribute with their own air quality data. However, low data quality is often an issue when using LCS and with it a risk of unrealistic expectations of a higher degree of empowerment than what is possible. If the data quality and intended use of the data is not harmonized, conclusions may be drawn on the wrong basis and data can be rendered unusable. Ensuring high data quality is demanding in terms of labor and resources. The expertise, sensor performance assessment, post-processing, as well as the general workload required will depend strongly on the purpose and intended use of the air quality data. It is therefore a balancing act to ensure that the data quality is high enough for the specific purpose, while minimizing the validation effort. The aim of this perspective paper is to increase awareness of data quality issues and provide strategies to minimizing labor intensity and expenses while maintaining adequate QA/QC for robust applications of LCS in citizen science projects. We believe that air quality measurements performed by citizens can be better utilized with increased awareness about data quality and measurement requirements, in combination with improved metadata collection. Well-documented metadata can not only increase the value and usefulness for the actors collecting the data, but it also the foundation for assessment of potential integration of the data collected by citizens in a broader perspective.
Frontiers Media S.A.
2021
Sør-Europa må forberede seg på skogbrann i sommer, mens Norge får regn
Norges forskningsråd
2024
2005
2023
2002
2002
1999
Synthetic musks in ambient and indoor air. Handbook of environmental chemistry. Vol. 3, Anthropogenic compounds, pt. X
2004
2002
2005
2001
2005