Fant 10001 publikasjoner. Viser side 57 av 401:
A multi-pollutant and multi-sectorial approach to screening the consistency of emission inventories
Some studies show that significant uncertainties affect emission inventories, which may impeach conclusions based on air-quality model results. These uncertainties result from the need to compile a wide variety of information to estimate an emission inventory. In this work, we propose and discuss a screening method to compare two emission inventories, with the overall goal of improving the quality of emission inventories by feeding back the results of the screening to inventory compilers who can check the inconsistencies found and, where applicable, resolve errors. The method targets three different aspects: (1) the total emissions assigned to a series of large geographical areas, countries in our application; (2) the way these country total emissions are shared in terms of sector of activity; and (3) the way inventories spatially distribute emissions from countries to smaller areas, cities in our application. The first step of the screening approach consists of sorting the data and keeping only emission contributions that are relevant enough. In a second step, the method identifies, among those significant differences, the most important ones that provide evidence of methodological divergence and/or errors that can be found and resolved in at least one of the inventories. The approach has been used to compare two versions of the CAMS-REG European-scale inventory over 150 cities in Europe for selected activity sectors. Among the 4500 screened pollutant sectors, about 450 were kept as relevant, among which 46 showed inconsistencies. The analysis indicated that these inconsistencies arose almost equally from large-scale reporting and spatial distribution differences. They mostly affect SO2 and PM coarse emissions from the industrial and residential sectors. The screening approach is general and can be used for other types of applications related to emission inventories.
2022
With the current possible presence of thousands of PFAS compounds in industrial emissions, there is an increasing need to assess the impacts of PFAS regulation of conventional PFAS on one hand and the exposure to emerging and yet unknown PFAS on the other. Today’s analytical methodologies using targeted approaches are not sufficient to determine the complete suite of PFAS present. To evaluate the presence of unknown PFAS, we investigated in this study the occurrence of an extended range of target PFAS in various species from the marine and terrestrial Norwegian environment, in relation to the extractable organic fluorine (EOF), which yields the total amount of organic fluorine. The results showed a varying presence of extractable fluorinated organics, with glaucous gull eggs, otter liver and polar bear plasma showing the highest EOF and a high abundance of PFAS as well. The targeted PFAS measurements explained 1% of the organic fluorine for moose liver as the lowest and 94% for otter liver as the highest. PFCAs like trifluoro acetic acid (TFA, reported semi-quantitatively), played a major role in explaining the organic fluorine present. Emerging PFAS as the perfluoroethylcyclohexane sulfonate (PFECHS), was found in polar bear plasma in quantifiable amounts for the first time, confirming earlier detection in arctic species far removed from emission sources. To enable a complete organic fluorine mass balance in wildlife, new approaches are needed, to uncover the presence of new emerging PFAS as cyclic- or ether PFAS together with chlorinated PFAS as well as fluorinated organic pesticides and pharmaceuticals.
2022
Copernicus Atmosphere Monitoring Service
2022
Microplastics in Norwegian coastal areas, rivers, lakes and air (MIKRONOR1)
The Norwegian Environment Agency (Miljødirektoratet, NEA) tasked the Norwegian Institute for Water Research (NIVA) to initiate Norway’s National microplastic monitoring program. The program “Microplastics in Norwegian coastal areas, rivers, lakes and air (MIKRONOR)”, was designed to target the multitude of environments in the Norwegian coastal, freshwater and terrestrial ecosystems. The primary aim is to provide information on levels and types of microplastics in aquatic environments as well as in air and build on the baseline data already generated for a number of these environments on previous assignments by NEA.
This report contains the first results of coastal sites, open marine waters, lakes, rivers and air including high-volume water samples (freshwater and marine, n=48), Ferrybox samples (marine, n=20), blue mussels (marine, n=71), vertical plankton net samples (marine, n=29) and 24 air samples (precipitation n= 12 and active air sampling n = 12).
Norsk institutt for vannforskning (NIVA)
2022
2022
2022
The National Mercury (Hg) Assessment in Norway evaluates the connections among: (a) national, regional and global Hg policies and regulations, (b) emissions, releases, uses and exposure pathways of Hg, and (c) concentrations of Hg in the environment, biota, and humans, measured during 2000-2020. Our findings suggest that the key changes of Hg in humans and the environment are highly dependent on the quality of the datasets, yet connections both to national and regional sources, as well as climate related drivers could be made for some data sets.
Norwegian Environment Agency
2022
Impact of the Pacific sector sea ice loss on the sudden stratospheric warming characteristics
The atmospheric response to Arctic sea ice loss remains a subject of much debate. Most studies have focused on the sea ice retreat in the Barents-Kara Seas and its troposphere-stratosphere influence. Here, we investigate the impact of large sea ice loss over the Chukchi-Bering Seas on the sudden stratospheric warming (SSW) phenomenon during the easterly phase of the Quasi-Biennial Oscillation through idealized large-ensemble experiments based on a global atmospheric model with a well-resolved stratosphere. Although culminating in autumn, the prescribed sea ice loss induces near-surface warming that persists into winter and deepens as the SSW develops. The resulting temperature contrasts foster a deep cyclonic circulation over the North Pacific, which elicits a strong upward wavenumber-2 activity into the stratosphere, reinforcing the climatological planetary wave pattern. While not affecting the SSW occurrence frequency, the amplified wave forcing in the stratosphere significantly increases the SSW duration and intensity, enhancing cold air outbreaks over the continents afterward.
2022
First documentation of plastic ingestion in the arctic glaucous gull (Larus hyperboreus)
Arctic wildlife is facing multiple stressors, including increasing plastic pollution. Seabirds are intrinsic to marine ecosystems, but most seabird populations are declining. We lack knowledge on plastic ingestion in many arctic seabird species, and there is an urgent need for more information to enable risk assessment and monitoring. Our study aimed to investigate the occurrence of plastics in glaucous gulls (Larus hyperboreus) breeding on Svalbard. The glaucous gull is a sentinel species for the health of the arctic marine ecosystem, but there have been no studies investigating plastic occurrence in this species since 1994. As a surface feeder and generalist living in an area with high human activity on Svalbard, we expected to find plastic in its stomach. We investigated for plastic >1 mm and documented plastic ingestion for the first time in glaucous gulls, with a frequency of occurrence of 14.3% (n = 21). The plastics were all identified as user plastics and consisted of polypropylene (PP) and polystyrene (PS). Our study provides new quantitative and qualitative data on plastic burden and polymer type reported in a standardized manner establishing a reference point for future research and monitoring of arctic gulls on national and international levels.
2022
A pooled analysis of molecular epidemiological studies on modulation of DNA repair by host factors
Levels of DNA damage represent the dynamics between damage formation and removal. Therefore, to better interpret human biomonitoring studies with DNA damage endpoints, an individual’s ability to recognize and properly remove DNA damage should be characterized. Relatively few studies have included DNA repair as a biomarker and therefore, assembling and analyzing a pooled database of studies with data on base excision repair (BER) was one of the goals of hCOMET (EU-COST CA15132). A group of approximately 1911 individuals, was gathered from 8 laboratories which run population studies with the comet-based in vitro DNA repair assay. BER incision activity data were normalized and subsequently correlated with various host factors. BER was found to be significantly higher in women. Although it is generally accepted that age is inversely related to DNA repair, no overall effect of age was found, but sex differences were most pronounced in the oldest quartile (>61 years). No effect of smoking or occupational exposures was found. A body mass index (BMI) above 25 kg/m2 was related to higher levels of BER. However, when BMI exceeded 35 kg/m2, repair incision activity was significantly lower. Finally, higher BER incision activity was related to lower levels of DNA damage detected by the comet assay in combination with formamidopyrimidine DNA glycosylase (Fpg), which is in line with the fact that oxidatively damaged DNA is repaired by BER. These data indicate that BER plays a role in modulating the steady-state level of DNA damage that is detected in molecular epidemiological studies and should therefore be considered as a parallel endpoint in future studies.
2022
Important clarifications regarding the long-range environmental transport of chemical additives contained in floating plastic debris are presented.
2022
Monitoring of environmental contaminants in air and precipitation. Annual report 2021.
This report presents data from 2021 and time-trends for the Norwegian monitoring programme "Atmospheric contaminants". The results cover 200 organic compounds (regulated and non-regulated), 11 heavy metals, and a selection of organic chemicals of concern.
NILU
2022
Operational retrievals of tropospheric trace gases from space-borne spectrometers are based on one-dimensional radiative transfer models. To minimize cloud effects, trace gas retrievals generally implement a simple cloud model based on radiometric cloud fraction estimates and photon path length corrections. The latter relies on measurements of the oxygen collision pair (O2–O2) absorption at 477 nm or on the oxygen A-band around 760 nm to determine an effective cloud height. In reality however, the impact of clouds is much more complex, involving unresolved sub-pixel clouds, scattering of clouds in neighbouring pixels, and cloud shadow effects, such that unresolved three-dimensional effects due to clouds may introduce significant biases in trace gas retrievals. Although clouds have significant effects on trace gas retrievals, the current cloud correction schemes are based on a simple cloud model, and the retrieved cloud parameters must be interpreted as effective values. Consequently, it is difficult to assess the accuracy of the cloud correction only based on analysis of the accuracy of the cloud retrievals, and this study focuses solely on the impact of the 3D cloud structures on the trace gas retrievals. In order to quantify this impact, we study NO2 as a trace gas example and apply standard retrieval methods including approximate cloud corrections to synthetic data generated by the state-of-the-art three-dimensional Monte Carlo radiative transfer model MYSTIC. A sensitivity study is performed for simulations including a box cloud, and the dependency on various parameters is investigated. The most significant bias is found for cloud shadow effects under polluted conditions. Biases depend strongly on cloud shadow fraction, NO2 profile, cloud optical thickness, solar zenith angle, and surface albedo. Several approaches to correct NO2 retrievals under cloud shadow conditions are explored. We find that air mass factors calculated using fitted surface albedo or corrected using the O2–O2 slant column density can partly mitigate cloud shadow effects. However, these approaches are limited to cloud-free pixels affected by surrounding clouds. A parameterization approach is presented based on relationships derived from the sensitivity study. This allows measurements to be identified for which the standard NO2 retrieval produces a significant bias and therefore provides a way to improve the current data flagging approach.
2022
2022
2022
While carbon dioxide is the main cause for global warming, modeling short-lived climate forcers (SLCFs) such as methane, ozone, and particles in the Arctic allows us to simulate near-term climate and health impacts for a sensitive, pristine region that is warming at 3 times the global rate. Atmospheric modeling is critical for understanding the long-range transport of pollutants to the Arctic, as well as the abundance and distribution of SLCFs throughout the Arctic atmosphere. Modeling is also used as a tool to determine SLCF impacts on climate and health in the present and in future emissions scenarios.
In this study, we evaluate 18 state-of-the-art atmospheric and Earth system models by assessing their representation of Arctic and Northern Hemisphere atmospheric SLCF distributions, considering a wide range of different chemical species (methane, tropospheric ozone and its precursors, black carbon, sulfate, organic aerosol, and particulate matter) and multiple observational datasets. Model simulations over 4 years (2008–2009 and 2014–2015) conducted for the 2022 Arctic Monitoring and Assessment Programme (AMAP) SLCF assessment report are thoroughly evaluated against satellite, ground, ship, and aircraft-based observations. The annual means, seasonal cycles, and 3-D distributions of SLCFs were evaluated using several metrics, such as absolute and percent model biases and correlation coefficients. The results show a large range in model performance, with no one particular model or model type performing well for all regions and all SLCF species. The multi-model mean (mmm) was able to represent the general features of SLCFs in the Arctic and had the best overall performance. For the SLCFs with the greatest radiative impact (CH4, O3, BC, and SO), the mmm was within ±25 % of the measurements across the Northern Hemisphere. Therefore, we recommend a multi-model ensemble be used for simulating climate and health impacts of SLCFs.
Of the SLCFs in our study, model biases were smallest for CH4 and greatest for OA. For most SLCFs, model biases skewed from positive to negative with increasing latitude. Our analysis suggests that vertical mixing, long-range transport, deposition, and wildfires remain highly uncertain processes. These processes need better representation within atmospheric models to improve their simulation of SLCFs in the Arctic environment. As model development proceeds in these areas, we highly recommend that the vertical and 3-D distribution of SLCFs be evaluated, as that information is critical to improving the uncertain processes in models.
2022
Assessment of heavy metal and POP pollution on global, regional and national scales
Meteorological Synthesizing Centre - East (MSC-E)
2022