Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9787 publikasjoner. Viser side 390 av 392:

Publikasjon  
År  
Kategori

From streets to seas: New greener ways to analyse urban snow pollution

Davie-Martin, Cleo Lisa; Håland, Alexander; Pedersen, Kristine B.; Normann, Anne Katrine Meinich

2025

Skogens helsetilstand i Norge. Resultater fra skogskadeovervåkingen i 2023

Timmermann, Volkmar; Aspholm, Paul Eric; Børja, Isabella; Clarke, Nicholas; Frisk, Carl A.; Gohli, Jostein; Jepsen, Jane Uhd; Krokene, Paal; Nagy, Nina Elisabeth; Nikolov, Christo; Nordbakken, Jørn-Frode; Romeiro, Joyce Machado Nunes; Solberg, Sverre; Solheim, Halvor; Svensson, Arvid; Vakula, Jozef; Vindstad, Ole Petter L.; Økland, Bjørn; Aas, Wenche

Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2023 og trender over tid for følgende temaer:
(i) Landsrepresentativ skogovervåking;
(ii) Intensiv skogovervåking;
(iii) Overvåking av bjørkemålere i Troms og Finnmark;
(iv) Barkbilleovervåkingen 2023: økende fangster – særlig i stormrammede områder;
(v) Søk etter Ips-arter utenfor det nordvestlige hjørnet av granas utbredelse i Europa;
(vi) Askeskuddsyke;
(vii) Andre spesielle skogskader i 2023.

NIBIO

2025

Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record

Legrand, Michel; Vorobyev, Mstislav; Bokuchava, Daria; Kutuzov, Stanislav; Plach, Andreas; Stohl, Andreas; Khairedinova, Alexandra; Mikhalenko, Vladimir; Vinogradova, Maria; Eckhardt, Sabine; Preunkert, Susanne

Atmospheric ammonia (NH3) is a key transboundary air pollutant that contributes to the impacts of nitrogen and acidity on terrestrial ecosystems. Ammonia also contributes to the atmospheric aerosol that affects air quality. Emission inventories indicate that NH3 was predominantly emitted by agriculture over the 19th and 20th centuries but, up to now, these estimates have not been compared to long-term observations. To document past atmospheric NH3 pollution in south-eastern Europe, ammonium (NH) was analysed along an ice core extracted from Mount Elbrus in the Caucasus, Russia. The NH ice-core record indicates a 3.5-fold increase in concentrations between 1750 and 1990 CE. Remaining moderate prior to 1950 CE, the increase then accelerated to reach a maximum in 1989 CE. Comparison between ice-core trends and estimated past emissions using state-of-the-art atmospheric transport modelling of submicron-scale aerosols (FLEXPART (FLEXible PARTicle dispersion) model) indicates good agreement with the course of estimated NH3 emissions from south-eastern Europe since ∼ 1750 CE, with the main contributions from south European Russia, Türkiye, Georgia, and Ukraine. Examination of ice deposited prior to 1850 CE, when agricultural activities remained limited, suggests an NH ice concentration related to natural soil emissions representing ∼ 20 % of the 1980–2009 CE NH level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soil. These findings on historical NH3 emission trends represent a significant contribution to the understanding of ammonia emissions in Europe over the last 250 years.

2025

Metaller, PCB, PAH og dioksiner i mose i Sør-Varanger. Moseundersøkelser 2008, 2015 og 2020

Berglen, Tore Flatlandsmo; Uggerud, Hilde Thelle; Schlabach, Martin; Eckhardt, Sabine; Enge, Ellen Katrin; Bjørklund, Morten; Pfaffhuber, Katrine Aspmo; Aandahl, Tone R.; Fjelldal, Erling

I 2008 samlet Svanhovd Miljøsenter inn mose ved 11 lokaliteter i grenseområdene mot Russland som NILU analyserte for 11 metaller, PCB, PAH og dioksiner. Formålet var å undersøke om det var andre kilder til forurensning i grenseområdene enn gruvedrift og smelteverksindustri. Prøvetaking og analyse ble gjentatt av NILU i 2015 og 2020, men kun for 60 (2015) og 56 (2020) metaller. For spormetallene Ni, Cu, Co og As er det et klart mønster med forhøyede konsentrasjoner nedstrøms Nikel og Zapolyarnyj. Organiske miljøgifter viser lave konsentrasjoner.

NILU

2025

Dust in the arctic: a brief review of feedbacks and interactions between climate change, aeolian dust and ecosystems

Meinander, Outi; Uppstu, Andreas; Dagsson-Waldhauserova, Pavla; Zwaaftink, Christine Groot; Jørgensen, Christian Juncher; Baklanov, Alexander; Kristensson, Adam; Massling, Andreas; Sofiev, Mikhail

Climatic feedbacks and ecosystem impacts related to dust in the Arctic include direct radiative forcing (absorption and scattering), indirect radiative forcing (via clouds and cryosphere), semi-direct effects of dust on meteorological parameters, effects on atmospheric chemistry, as well as impacts on terrestrial, marine, freshwater, and cryospheric ecosystems. This review discusses our recent understanding on dust emissions and their long-range transport routes, deposition, and ecosystem effects in the Arctic. Furthermore, it demonstrates feedback mechanisms and interactions between climate change, atmospheric dust, and Arctic ecosystems.

Frontiers Media S.A.

2025

Klatresko bidreg til forureining

Hak, Claudia (intervjuobjekt); Kleiven, Maria Fimreite (journalist)

2025

Forurensning gjorde folk dårligere til å tenke

Grythe, Henrik (intervjuobjekt); Spilde, Ingrid (journalist)

2025

Modelling Arctic Atmospheric Aerosols: Representation of Aerosol Processing by Ice and Mixed-Phase Clouds

Gong, Wanmin; Stephen, Beagley; Ghahreman, Roya; Sharma, Sangeeta; Huang, Lin; Quinn, Patricia K.; Massling, Andreas; Pernov, Jakob Boyd; Skov, Henrik; Calzolai, Giulia; Traversi, Rita; Aas, Wenche; Yttri, Karl Espen; Vestenius, Mika; Makkonen, Ulla; Kivekäs, Niku; Kulmala, Markku; Alto, Pasi; Fiebig, Markus

2025

Investigating the impact of climate change on PCB-153 exposure in Arctic seabirds with the nested exposure model

Skogeng, Lovise Pedersen; Blévin, Pierre; Breivik, Knut; Bustnes, Jan Ove; Eulaers, Igor; Sagerup, Kjetil; Krogseth, Ingjerd Sunde

At the same time Arctic ecosystems experiences rapid climate change, at a rate four times faster than the global average, they remain burdened by long-range transported pollution, notably with legacy polychlorinated biphenyls (PCBs). The present study investigates the potential impact of climate change on seabird exposure to PCB-153 using the established Nested Exposure Model (NEM), here expanded with three seabird species, i.e. common eider (Somateria mollissima), black-legged kittiwake (Rissa tridactyla) and glaucous gull (Larus hyperboreus), as well as the filter feeder blue mussel (Mytulis edulis). The model's performance was evaluated using empirical time trends of the seabird species in Kongsfjorden, Svalbard, and using tissue concentrations from filter feeders along the northern Norwegian coast. NEM successfully replicated empirical PCB-153 concentrations, confirming its ability to simulate PCB-153 bioaccumulation in the studied seabird species within an order of magnitude. Based on global PCB-153 emission estimates, simulations run until the year 2100 predicted seabird blood concentrations 99% lower than in year 2000. Model scenarios with climate change-induced altered dietary composition and lipid dynamics showed to have minimal impact on future PCB-153 exposure, compared to temporal changes in primary emissions of PCB-153. The present study suggests the potential of mechanistic modelling in assessing POP exposure in Arctic seabirds within a multiple stressor context.

Royal Society of Chemistry (RSC)

2025

The ANALYST project: Strengthening the integrated approach of holistic impact assessments for Safe and Sustainable by design plastic value chain

Longhin, Eleonora Marta; Murugadoss, Sivakumar; Olsen, Ann-Karin Hardie; SenGupta, Tanima; Rundén-Pran, Elise; El Yamani, Naouale; Dusinska, Maria; Lago, Ana; Ferreira, G.

2025

Cyclic volatile methyl siloxanes in the terrestrial and aquatic environment at remote Arctic sites

Nipen, Maja; Hartz, William Frederik; Schulze, Dorothea; Christensen, Guttorm; Løge, Oda Siebke; Nikiforov, Vladimir; Bohlin-Nizzetto, Pernilla

Cyclic volatile methyl siloxanes (cVMS) are widely used chemicals with high emissions to the atmosphere due to their volatility. They are found in the Arctic atmosphere, indicating potential for long-range transport. This study examined the potential for deposition of cVMS (D4, D5, D6) to surface media via snow in Arctic regions. Results showed low cVMS levels in vegetation, soil, sediment, and marine biota. D4 was detected above detection limits but generally below quantification limits, while D5 and D6 were generally not detected. This aligns with current research, suggesting negligible cVMS input from atmospheric deposition via snow and snow melt.

NILU

2025

Duftlys sammenlignes med gasskomfyrer: – Kan bli farlig

Håland, Alexander; Nordby, Karl-Christian; Olsen, Raymond (intervjuobjekter); Alfonzo, Sabrina (journalist)

2025

Methane emissions from Australia estimated by inverse analysis using in-situ and Satellite (GOSAT) atmospheric observations

Wang, Fenjuan; Maksyutov, Shamil; Janardanan, Rajesh; Ito, Akihiko; Morino, Isamu; Yoshida, Yukio; Someya, Yu; Tohjima, Yasunori; Kelly, Bryce F. J.; Kaiser, Johannes; Xin, Lan; Mammarella, Ivan; Matsunaga, Tsuneo

Australia has significant sources of atmospheric methane (CH₄), driven by extensive coal and natural gas production, livestock, and large-scale fires. Accurate quantification and characterization of CH₄ emissions are critical for effective climate mitigation strategies in Australia. In this study, we employed an inverse analysis of atmospheric CH₄ observations from the GOSAT satellite and surface measurements from 2016 to 2021 to assess CH₄ emissions in Australia. The inversion process integrates anthropogenic and natural emissions as prior estimates, optimizing them with the NIES-TM-FLEXPART-variational model (NTFVAR) at a resolution of up to 0.1° × 0.1°. We validated the performance of our inverse model using data obtained from the United Nations Environment Program Methane Science (UNEP), Airborne Research Australia 2018 aircraft-based atmospheric CH₄ measurement campaigns. Compared to prior emission estimates, optimized emissions dramatically enhanced the accuracy of modeled concentrations, aligning them much better with observations. Our results indicate that the estimated inland CH4 emissions in Australia amount to 6.84 ± 0.51 Tg CH4 yr−1 and anthropogenic emissions amount to 4.20 ± 0.08 Tg CH4 yr−1, both slightly lower than the values reported in existing inventories. Moreover, our results unveil noteworthy spatiotemporal characteristics, such as upward corrections during the warm season, particularly in Southeastern Australia. During the three most severe months of the 2019–2020 bushfire season, emissions from biomass burning surged by 0.68 Tg, constituting over 71% of the total emission increase. These results highlight the importance of continuous observation and analysis of sectoral emissions, particularly near major sources, to guide targeted emission reduction strategies. The spatiotemporal characteristics identified in this study underscore the need for adaptive and region-specific approaches to CH₄ emission management in Australia.

2025

Arctic food and energy security at the crossroads

Unc, Adrian; Najm, Majdi R. Abou; Aspholm, Paul Eric; Bolisetti, Tirupati; Charles, Colleen; Datta, Ranjan; Eggen, Trine; Flem, Belinda Eline; Hailu, Getu; Heimstad, Eldbjørg Sofie; Hurlbert, Margot; Karlsson, Meriam; Korsnes, Marius Støylen; Nash, Arthur; Parsons, David; Sajeevan, Radha Sivarajan; Shurpali, Narasinha J.; Valkenburg, Govert; Wilde, Danielle; Wu, Bing; Yanni, Sandra F.; Misra, Debasmita

Springer Nature

2025

Svarbrev fra NKS-FAK på nye karakterkrav for Analytisk kjemi kurs ved NMBU

Dundas, Siv Hjorth; Uggerud, Hilde Thelle; Kallenborn, Roland; Enger, Øyvind; Eriksen Hammer, Stine; Røberg-Larsen, Hanne

2025

Unchanged PM2.5 levels over Europe during COVID-19 were buffered by ammonia

Evangeliou, Nikolaos; Tichý, Ondřej; Otervik, Marit Svendby; Eckhardt, Sabine; Balkanski, Yves; Hauglustaine, Didier A.

The coronavirus outbreak in 2020 had a devastating impact on human life, albeit a positive effect on the environment, reducing emissions of primary aerosols and trace gases and improving air quality. In this paper, we present inverse modelling estimates of ammonia emissions during the European lockdowns of 2020 based on satellite observations. Ammonia has a strong seasonal cycle and mainly originates from agriculture. We further show how changes in ammonia levels over Europe, in conjunction with decreases in traffic-related atmospheric constituents, modulated PM2.5. The key result of this study is a −9.8 % decrease in ammonia emissions in the period of 15 March–30 April 2020 (lockdown period) compared to the same period in 2016–2019, attributed to restrictions related to the global pandemic. We further calculate the delay in the evolution of the ammonia emissions in 2020 before, during, and after lockdowns, using a sophisticated comparison of the evolution of ammonia emissions during the same time periods for the reference years (2016–2019). Our analysis demonstrates a clear delay in the evolution of ammonia emissions of −77 kt, which was mainly observed in the countries that imposed the strictest travel, social, and working measures. Despite the general drop in emissions during the first half of 2020 and the delay in the evolution of the emissions during the lockdown period, satellite and ground-based observations showed that the European levels of ammonia increased. On one hand, this was due to the reductions in SO2 and NOx (precursors of the atmospheric acids with which ammonia reacts) that caused less binding and thus less chemical removal of ammonia (smaller loss – higher lifetime). On the other hand, the majority of the emissions persisted because ammonia mainly originates from agriculture, a primary production sector that was influenced very little by the lockdown restrictions. Despite the projected drop in various atmospheric aerosols and trace gases, PM2.5 levels stayed unchanged or even increased in Europe due to a number of reasons that were attributed to the complicated system. Higher water vapour during the European lockdowns favoured more sulfate production from SO2 and OH (gas phase) or O3 (aqueous phase). Ammonia first reacted with sulfuric acid, also producing sulfate. Then, the continuously accumulating free ammonia reacted with nitric acid, shifting the equilibrium reaction towards particulate nitrate. In high-free-ammonia atmospheric conditions such as those in Europe during the 2020 lockdowns, a small reduction in NOx levels drives faster oxidation toward nitrate and slower deposition of total inorganic nitrate, causing high secondary PM2.5 levels.

2025

Legacy and emerging per- and polyfluoroalkyl substances in eggs of yellow-legged gulls from Southern France

Jouanneau, William; Boulinier, Thierry; Herzke, Dorte; Nikiforov, Vladimir; Gabrielsen, Geir Wing; Chastel, Olivier

More than 70 years of industrial production of per- and polyfluoroalkyl substances (PFAS) have resulted in their ubiquitous presence in the environment on a global scale, although differences in sources, transport and fate lead to variability of occurrence in the environment. Gull eggs are excellent bioindicators of environmental pollution, especially for persistent organic pollutants such as PFAS, known to bioaccumulate in organisms and to be deposited in bird eggs by maternal transfer. Using yellow-legged gull (Larus michahellis) eggs, we investigated the occurrence of more than 30 PFAS, including the most common chemicals (i.e., legacy PFAS) as well as their alternatives (i.e., emerging PFAS) in the Bay of Marseille, the second largest city in France. Compared to eggs from other colonies along the Mediterranean coast, those from Marseille had PFAS concentrations ranging from slightly higher to up to four times lower, suggesting that this area cannot be specifically identified as a hotspot for these compounds. We also found several emerging PFAS including 8:2 and 10:2 FTS, 7:3 FTCA or PFECHS in all collected eggs. Although the scarcity in toxicity thresholds for seabirds, especially during embryogenesis, does not enable any precise statement about the risks faced by this population, this study contributes to the effort in documenting legacy PFAS contamination on Mediterranean coasts while providing valuable novel inputs on PFAS of emerging concern. Identifying exposure in free-ranging species also participate to determine the main target for toxicity testing in wildlife.

Elsevier

2025

Intercorrelations of short-, medium- and long-chain chlorinated paraffins, dechloranes and legacy POPs in 10 species of marine mammals from Norway, in light of dietary niche

Andvik, Clare Margaret; Jourdain, Eve Marie; Borgen, Anders; Lyche, Jan Ludvig; Karoliussen, Richard; Haug, Tore; Borgå, Katrine

2025

Modelling the Transport Externalities of Urban Sprawl Development in Polish Cities Between 2006 and 2023

Drabicki, Arkadiusz; Lopez-Aparicio, Susana; Grythe, Henrik; Kierpiec, Urszula; Tobola, Kamila; Kud, Bartosz; Chwastek, Konrad

2025

Forskeren som oppdaget sur nedbør: Trump kan gjøre det til et problem igjen

Aas, Wenche (intervjuobjekt); Borgan, Eldrid (journalist)

2025

Understanding the origins of urban particulate matter pollution based on high-density vehicle-based sensor monitoring and big data analysis

Liang, Yiheng; Wang, Xiaohua; Dong, Zhongzhen; Wang, Xinfeng; Wang, Shidong; Si, Shuchun; Wang, Jing; Liu, Hai Ying; Zhang, Qingzhu; Wang, Qiao

2025

Inverse modeling of 137Cs during Chernobyl 2020 wildfires without the first guess

Tichý, Ondřej; Evangeliou, Nikolaos; Selivanova, Anna; Šmídl, Václav

Elsevier

2025

Publikasjon
År
Kategori